欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2018, Vol. 35 ›› Issue (1): 131-136.DOI: 10.7523/j.issn.2095-6134.2018.01.018

• 计算机科学 • 上一篇    下一篇

基于深度学习的微博用户自杀风险预测

田玮1,2, 朱廷劭1   

  1. 1. 中国科学院心理研究所, 北京 100101;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2016-11-23 修回日期:2017-02-27 发布日期:2018-01-15
  • 通讯作者: 朱廷劭
  • 基金资助:
    973计划项目(2014CB744603)资助

Deep learning model for suicidal identification of Chinese microblogs

TIAN Wei1,2, ZHU Tingshao1   

  1. 1. Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-23 Revised:2017-02-27 Published:2018-01-15

摘要: 随着互联网的发展,越来越多的人在社交网络表达自己的情感,其中包括自杀意愿,这就为自杀预防创造了新机遇。如果自杀风险可以利用微博进行自动识别,就可以为自杀预防工作开辟新方向。本文立足于使用深度学习建立社交媒体自杀识别器,探讨通过社交平台实时评估个体用户自杀可能性。为验证这种算法模型的有效性,对算法所使用的关键词属性进行统计学分析,并与另外两种算法模型的预测结果进行比较。实验结果表明基于深度学习的算法模型可更有效地对微博用户的自杀风险进行预测。

关键词: 自杀, 多层神经网络, 微博, 社交网络, 识别器

Abstract: With the development of internet, more and more people express their emotion and feeling in social media, including suicidal ideation. There is a new opportunity for suicide prevention, if people with high suicidal risks can be identified through social media like microblog. In this work we attempt to set up the suicidal ideation recognizer with deep learning model, and address the possibility of suicidal risk assessment in social media. In order to verify the validity of the algorithm model,we also conduct statistical analysis of the key word features, and compare the incorrectly classified instances with other two algorithms. The results indicate that deep learning algorithm works more effectively for suicide risk identification.

Key words: suicide, multi-layer perception(MLP), microblogs, social media, recognizer

中图分类号: