欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (5): 678-686.DOI: 10.7523/j.issn.2095-6134.2021.05.012

• 电子科学 • 上一篇    下一篇

面向三维信道幅值预测的自适应神经网络

于文欣1,3, 李凯2, 周明拓1, 李剑1, 杨旸2   

  1. 1. 中国科学院上海微系统与信息技术研究所, 上海 200050;
    2. 上海科技大学, 上海 201210;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2019-12-30 修回日期:2020-04-08 发布日期:2021-09-13
  • 通讯作者: 周明拓
  • 基金资助:
    上海市科学技术委员会项目(18511106500)资助

Adaptive neural network for 3D channel amplitude prediction

YU Wenxin1,3, LI Kai2, ZHOU Mingtuo1, LI Jian1, YANG Yang2   

  1. 1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
    2. ShanghaiTech University, Shanghai 201210, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-12-30 Revised:2020-04-08 Published:2021-09-13

摘要: 针对在采用massive MIMO(multiple-input multiple-output)系统的5G网络规划中,使用传统的系统级仿真方法获得信道幅值的计算量和时间开销非常大的问题,提出一种基于BP(back propagation)神经网络的自适应神经网络来预测massive MIMO系统的信道幅值。自适应神经网络由基本BP子神经网络和特征降维BP子神经网络组成,可实现对给定训练集和预测集的自适应,基于用户射线追踪数据快速准确地预测用户的信道幅值。仿真结果表明,所提出的自适应神经网络在得到与系统级仿真方法精度接近的信道幅值的同时,可大幅降低获得信道幅值的时间开销;并且与采用传统BP神经网络相比,可以明显降低训练时间、预测误差大的用户数和平均预测误差。

关键词: 自适应神经网络, 5G网络规划, massive MIMO, 信道幅值预测, 射线追踪数据

Abstract: Aiming at the problem that the computation and time overhead of obtaining channel amplitude is very large when implementing network planning of 5G massive MIMO (multiple-input multiple-output) networks with the traditional system-level simulation methods, this paper proposes a BP (back propagation) network based adaptive neural network to predict the channel amplitude of massive MIMO systems. The adaptive neural network consists of a basic BP sub neural network and a feature-reduced BP sub neural network, which can realize self-adaption to the given training and test set and can quickly and accurately predict the user channel amplitude based on the ray-tracing data. Simulation results show that the proposed adaptive neural network can achieve close accuracy to the traditional system-level simulation methods when obtaining channel amplitude but with significantly reduced time overhead and can obviously reduce the training time, the amount of users with large prediction error and the average prediction error compared with the traditional BP neural network.

Key words: adaptive neural network, 5G network planning, massive MIMO, channel amplitude prediction, ray-tracing data

中图分类号: