欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

考虑在线评价的多产品定价与评价呈现机制研究*

黄薇, 言小明   

  1. 中国科学技术大学 管理学院,合肥 230026
  • 收稿日期:2025-07-02 修回日期:2025-11-17 发布日期:2025-11-26
  • 通讯作者: E-mail: yanxm325@ustc.edu.cn
  • 基金资助:
    *国家自然科学基金(71971200)资助

Online review influence on multi-product pricing and review provision policies

HUANG Wei, YAN Xiaoming   

  1. School of Management, University of Science and Technology of China, Hefei 230026,China
  • Received:2025-07-02 Revised:2025-11-17 Published:2025-11-26

摘要: 本文研究可替代产品生产企业在消费者社会学习情境下的定价策略与在线评价呈现机制选择问题。通过建立两阶段销售模型,对比分析了单品评价(分版本展示)和综合评价(聚合展示)两种机制的作用机理与适用条件。研究结果表明,在线评价促使企业采取渗透定价策略。评价呈现机制的最优选择取决于产品设计质量与消费者评价学习速率的交互作用:当设计质量较低且学习速率较慢时,综合评价通过信息聚合效应能够有效降低质量评估噪声,提升企业收益;而当设计质量较高且学习速率较快时,单品评价通过精确传递质量信号产生更大价值。特别地,当参数处于特定区间时,科学的评价呈现机制选择可以同时提升企业利润、消费者剩余与社会福利,实现三方共赢。

关键词: 在线评价, 评价呈现机制, 定价策略

Abstract: This study explores optimal pricing strategies and online review provision policies for firms selling substitutable products in markets with social learning. Using a two-period model, we compare two common review policies: displaying reviews separately for each version (the separated policy) and aggregating reviews across all versions (the aggregated policy). We find that online reviews generally induce firms to adopt penetration pricing strategies. The optimal review policy depends crucially on two factors: product display quality and consumer learning speed. The aggregated policy is more profitable for low-quality products with slow learning, as it mitigates quality assessment noise through information aggregation. Conversely, the separated policy outperforms for high-quality products with rapid learning, as it provides precise quality signals. Within optimized thresholds, each policy achieves a triple-win: increasing firm profits, consumer welfare, and social surplus.

Key words: online reviews, review provision policy, pricing strategy

中图分类号: