欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (5): 677-683.DOI: 10.7523/j.ucas.2020.0042

• 电子信息与计算机科学 • 上一篇    下一篇

基于双目点云的三维物体检测准确性分析

刘王超1,2,3, 娄鑫1,2   

  1. 1. 上海科技大学信息科学与技术学院, 上海 201210;
    2. 中国科学院上海微系统与信息技术研究所, 上海 200050;
    3. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2020-05-18 修回日期:2020-08-28 发布日期:2021-05-31
  • 通讯作者: 娄鑫
  • 基金资助:
    国家自然科学基金(61801292)和上海青年科技英才扬帆计划(18YF1416600)资助

Accuracy analysis of 3D object detection based on stereo point cloud

LIU Wangchao1,2,3, LOU Xin1,2   

  1. 1. School of Information Science & Technology, ShanghaiTech University, Shanghai 201220, China;
    2. Shanghai Institute of Microsystem & Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
    3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Science, Beijing 100049, China
  • Received:2020-05-18 Revised:2020-08-28 Published:2021-05-31

摘要: 双目相机虽然能通过算法生成密集的深度数据,但其在精度上与激光雷达生成的深度数据有着较大的差距,特别是在纹理不明显的区域。针对这种现象,尝试使用激光雷达的精确点云来排除由双目相机产生的pseudo-LiDAR数据中与之差别较大的部分点,然后将优化后的pseudo-LiDAR用以进行三维物体检测。实验结果显示,将pseudo-LiDAR数据中的不准确点(坏点)排除,有助于提高检测准确率,最多可提高21.02%。因此,如何不依赖激光雷达数据来排除pseudo-LiDAR点云中的坏点是进一步提高双目相机系统检测准确率的关键。

关键词: 三维物体检测, 激光雷达, 双目相机, 点云, 误差

Abstract: 3D object detection is a crucial task in autonomous driving. Recently, the accuracy of LiDAR-based 3D object detection algorithms have improved dramatically. However, if we replace the LiDAR data with the depth map that generates from stereo cameras, the detection performance drops a lot. In a recent research, it is found that by transforming the stereo-based depth map to point cloud representation, referred to as pseudo-LiDAR, the performance of 3D object detection can be improved significantly. However, there is still a big gap of accuracy between LiDAR-based and stereo-based algorithms. One of the main reasons is that there are error points in the transformed pseudo-LiDAR data. To study this, we use the LiDAR points cloud to correct the pseudo-LiDAR data, i.e., to detect and exclude the error points. Then we use the optimized pseudo-LiDAR to perform 3D object detection. Experimental results show that the detection accuracy can be improved by as much as 21.02%.

Key words: 3D object detection, LiDAR, stereo cameras, point cloud, error

中图分类号: