欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (5): 684-694.DOI: 10.7523/j.ucas.2020.0060

• 电子信息与计算机科学 • 上一篇    下一篇

基于滤波张量分析的高光谱目标检测方法

杨帅, 计璐艳, 耿修瑞   

  1. 中国科学院大学, 北京 100049;中国科学院空天信息创新研究院 中国科学院空间信息处理与 应用系统技术重点实验室, 北京 100094
  • 收稿日期:2020-11-18 修回日期:2021-04-09 发布日期:2021-09-18
  • 通讯作者: 计璐艳
  • 基金资助:
    国家自然科学基金青年基金(Y8J7180526)资助

Hyperspectral target detection method based on filter tensor analysis

YANG Shuai, JI Luyan, GENG Xiurui   

  1. University of Chinese Academy of Sciences, Beijing 100049, China;CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2020-11-18 Revised:2021-04-09 Published:2021-09-18

摘要: 现有的高光谱图像目标检测算法大都把各个波段不加区分地对待,从而不能充分利用图像波段的物理信息。将高光谱图像按照成像机理的不同首先分为几个不同的波段范围(比如可见光、近红外、短波红外等),并通过将高光谱图像的不同波段范围与多时相遥感数据的时相维进行对应,将最近发展的一个多时相目标检测算法——滤波张量分析(filter tensor analysis,FTA)引入高光谱目标检测中,提出一种面向单时相高光谱图像的分波段FTA算法。针对高光谱图像的实验表明,与传统的单时相目标检测算法相比,分波段FTA算法取得了很好的检测效果。

关键词: 高光谱图像, 目标检测, FTA, 分波段, CEM

Abstract: Most of the existing target detection algorithms for hyperspectral images treat each band indiscriminately, so the physical information of the image band cannot be fully utilized. In this paper, the hyperspectral images are firstly divided into several different waveband ranges (such as visible light, near infrared, shortwave infrared, etc.) according to the different imaging mechanisms. A recently developed multi-temporal target detection algorithm:FTA (filter tensor analysis) is introduced into the hyperspectral target detection by combining the different waveband ranges of the hyperspectral images with the time-phase dimension of multi-temporal remote sensing data correspondingly. Based on the new approach, a band-divided FTA algorithm for single-temporal hyperspectral images is proposed. Experiments on hyperspectral images prove that the band-divided FTA algorithm can achieve better results in target detection than the traditional single-phase target detection algorithm.

Key words: hyperspectral image, target detection, FTA, band-divided, CEM

中图分类号: