欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (1): 1-5.DOI: 10.7523/j.ucas.2021.0015

• 数学与物理学 •    

洛伦兹空间上的分布函数的极限性质

吴迪1, 邓杨肯迪2, 于丹丹2, 燕敦验2   

  1. 1. 浙江科技学院理学院, 杭州 310023;
    2. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2021-01-05 修回日期:2021-03-03 发布日期:2021-05-31
  • 通讯作者: 燕敦验,E-mail:ydunyan@ucas.ac.cn
  • 基金资助:
    NSF of Zhejiang Province of China (LQ18A010002,LQ17A010002)

Limiting property of distribution function in Lorentz space

WU Di1, DENG Yangkendi2, YU Dandan2, YAN Dunyan2   

  1. 1. School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China;
    2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-01-05 Revised:2021-03-03 Published:2021-05-31
  • Supported by:
    NSF of Zhejiang Province of China (LQ18A010002,LQ17A010002)

摘要: 用一个新颖的方法证明以下等式:
$\mathop {\lim }\limits_{\alpha \to {0^ + }} {\alpha ^P}{d_f}(\alpha ) = \mathop {\lim }\limits_{\alpha \to \infty } {\alpha ^P}{d_f}(\alpha ) = 0$
其中 fLp,q(X,μ),并且有0<p<∞和0<q<∞。也证明函数αp在某种意义下不能再提升。特别地,当q=∞时,以上等式是不一定成立的。

关键词: 极限行为, 分布函数, 洛伦兹空间

Abstract: In this paper, we give a novel proof for the following equality
$\mathop {\lim }\limits_{\alpha \to {0^ + }} {\alpha ^P}{d_f}(\alpha ) = \mathop {\lim }\limits_{\alpha \to \infty } {\alpha ^P}{d_f}(\alpha ) = 0$
for fLp,q(X,μ) with 0<p<∞, and 0<q<∞.We also prove that the function αp can not be improved for some sense. When q=∞, the above equality does not hold.

Key words: limiting behavior, distribution functions, Lorentz spaces

中图分类号: