欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (2): 208-216.DOI: 10.7523/j.ucas.2021.0038

• 电子信息与计算机科学 • 上一篇    下一篇

基于FVC-CNN模型的野外车辆声信号分类

李翔1,2, 王艳1,2, 李宝清1   

  1. 1. 中国科学院上海微系统与信息技术研究所 微系统技术重点实验室, 上海 201800;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2020-12-15 修回日期:2021-04-08 发布日期:2021-07-02
  • 通讯作者: 李宝清,E-mail:sinoiot@mail.sim.ac.cn
  • 基金资助:
    微系统技术重点实验室基金项目(6142804190304)资助

Field vehicle signal classification based on FVC-CNN

LI Xiang1,2, WANG Yan1,2, LI Baoqing1   

  1. 1. Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-12-15 Revised:2021-04-08 Published:2021-07-02

摘要: 针对野外环境下单通道车辆声信号受风噪影响严重、分类性能较低的问题,提出一种基于声阵列4通道同步采集信号的一维卷积神经网络模型(FVC-CNN)。该模型借鉴注意力机制加权平均的思想对Inception网络结构进行改进,作为输入层有针对性地提取4通道声信号多个不同时间尺度的特征,抑制噪声干扰,再根据不同车辆声信号特征分布特点,分别训练3个特征提取网络SWNet、LWNet和TNet来提取相应车辆的特征,最后对提取的特征进行多分支多维度的融合以供分类。在相同数据集上进行验证,实验结果表明,FVC-CNN模型总识别率可达94.22%,相较于传统方法识别率提高14.08%,取得了较好的分类效果。

关键词: 野外车辆信号分类, 4通道声阵列输入, Inception结构, 注意力机制, 多分支特征提取, 多分支多维度特征融合

Abstract: Aiming at the problem that single channel vehicle acoustic signal is seriously affected by wind noise and has low classification performance, a one-dimensional convolutional neural network model FVC-CNN (convolutional neural network for field vehicle classification, FVC-CNN) based on four channel synchronous acquisition signal of acoustic array is proposed in this paper. The model uses the idea of weighted average of attention mechanism to improve the structure of Inception network. As the input layer, it extracts the features of four channel acoustic signals with different time scales to suppress noise interference. According to the distribution characteristics of different vehicle acoustic signals, three feature extraction networks, SWNet, LWNet, and TNet, are trained to extract the characteristics of the corresponding vehicle, finally, the extracted features are fused with multi branches and multi dimensions for classification. Verified on the same data set, the experimental results show that the total recognition rate of FVC-CNN model can reach 94.22%, which is 14.08% higher than the traditional method, and the classification effect is better.

Key words: field vehicle signal classification, four channel acoustic array input, Inception structure, attention mechanism, multi branch feature extraction, multi-branch and multi-dimensional feature fusion

中图分类号: