欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (3): 371-379.DOI: 10.7523/j.ucas.2021.0074

• 电子信息与计算机科学 • 上一篇    下一篇

融合遥感图像光谱和空间信息的云检测深度网络

陈思亚1,2, 计璐艳1, 张鹏1, 唐海蓉1,2   

  1. 1. 中国科学院空天信息创新研究院 中国科学院空间信息处理与应用系统技术重点实验室, 北京 100094;
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2021-10-11 修回日期:2021-11-16 发布日期:2023-05-13
  • 通讯作者: 唐海蓉,E-mail:tanghr@aircas.ac.cn
  • 基金资助:
    国家重点研发计划(2018YFC1407200)和国家自然科学基金青年基金(61805246)资助

Spectral-spatial feature fusion deep network for cloud detection in remote sensing images

CHEN Siya1,2, JI Luyan1, ZHANG Peng1, TANG Hairong1,2   

  1. 1. CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-10-11 Revised:2021-11-16 Published:2023-05-13

摘要: 当前的云检测方法未能充分利用遥感图像的光谱特征和空间特征。光谱信息的不充分利用会导致错分具有和云相似光谱特征的目标,而空间信息的不充分利用会导致碎云和薄云难以识别。基于此,提出一种融合遥感图像光谱和空间信息的新型云检测深度网络(SSFF-Net)。SSFF-Net首先利用1×1的卷积核提取遥感图像的光谱特征,其次将Transformer引入到遥感图像空间上的编解码来学习远距离的特征,充分利用遥感图像的光谱和空间信息。SSFF-Net克服了光谱特征提取依赖于经验性的线性组合,并能减少空间位置信息损失。将模型在Landsat 8 Biome以及AIR-CD数据集上进行评估,结果表明SSFF-Net具有较好的云检测效果,精度分别达到97%和96%。

关键词: 光谱信息, 空间信息, Transformer, 云检测, 信息损失

Abstract: Current cloud detection methods fail to fully utilize the spectral-spatial features of remote sensing images. Insufficient use of spectral information results in misclassification of cloud with similar spectral feature, and insufficient use of spatial information makes it difficult to identify broken clouds or thin clouds. Motivated by these issues, we propose a spectral-spatial feature fusion network (SSFF-Net) for cloud detection which leverages the spectral-spatial information of remote sensing images. Firstly, SSFF-Net extracts the spectral features of remote sensing images with the 1×1 convolution kernel, then Transformer-based spatial encoder and decoder is applied to learn long-distance feature, which fully exploits the spectral and spatial information of remote sensing images. In this way, SSFF-Net overcomes the problem that spectral feature extraction depends on the empirical linear combination, and further reduces the loss of spatial position information. We evaluate our proposed model on the Landsat8 Biome and AIR-CD datasets. The results show that SSFF-Net has a good performance for cloud detection, with an accuracy of 97% and 96%, respectively.

Key words: spectral information, spatial information, Transformer, cloud detection, loss of information

中图分类号: