[1] Mazumder R, Hastie T, Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices[J]. The Journal of Machine Learning Research, 2010, 11: 2287-2322. [2] Bell R M, Koren Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights[C]//Seventh IEEE International Conference on Data Mining (ICDM 2007). October 28-31, 2007, Omaha, NE, USA. IEEE, 2008: 43-52. DOI: 10.1109/ICDM.2007.90. [3] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th international conference on Machine learning. June 20-24, 2007, Corvalis, Oregon, USA. New York: ACM, 2007: 791-798. DOI: 10.1145/1273496.1273596. [4] Blanco-Fernandez Y, Pazos-arias J J, Gil-Solla A, et al. Providing entertainment by content-based filtering and semantic reasoning in intelligent recommender systems[J]. IEEE Transactions on Consumer Electronics, 2008, 54(2): 727-735. DOI: 10.1109/TCE.2008.4560154. [5] Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends[M]// Recommender Systems Handbook. Boston, MA: Springer, 2011: 73-105.10.1007/978-0-387-85820-3_3. [6] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. DOI: 10.1109/TKDE.2005.99. [7] Park S T, Pennock D, Madani O, et al. Naïve filterbots for robust cold-start recommendations[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. August 20-23, 2006, Philadelphia, PA, USA. New York: ACM, 2006: 699-705. DOI: 10.1145/1150402.1150490. [8] Zhu Y Z, Shen X T, Ye C Q. Personalized prediction and sparsity pursuit in latent factor models[J]. Journal of the American Statistical Association, 2016, 111(513): 241-252. DOI: 10.1080/01621459.2014.999158. [9] Zhao L L, Pan S J, Xiang E W, et al. Active transfer learning for cross-system recommendation[C]//Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. July 14-18, 2013, Bellevue, Washington. New York: ACM, 2013: 1205-1211. DOI: 10.5555/2891460.2891628. [10] Li B, Yang Q, Xue X Y. Can movies and books collaborate?: cross-domain collaborative filtering for sparsity reduction[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. July 11-17, 2009, Pasadena, California,. [11] Ren S T, Gao S, Liao J X, et al. Improving cross-domain recommendation through probabilistic cluster-level latent factor model[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. January 25-30, 2015, Austin, Texas. New York: ACM, 2015: 4200-4201. DOI: 10.5555/2888116.2888327. [12] Bi X, Qu A N, Wang J H, et al. A group-specific recommender system[J]. Journal of the American Statistical Association, 2017, 112(519): 1344-1353. DOI: 10.1080/01621459.2016.1219261. [13] Wang J H. Consistent selection of the number of clusters via crossvalidation[J]. Biometrika, 2010, 97(4): 893-904. DOI: 10.1093/biomet/asq061. [14] Miller B N, Albert I, Lam S K, et al. MovieLens unplugged: experiences with an occasionally connected recommender system[C]//Proceedings of the 8th international conference on Intelligent user interfaces. January 12-15, 2003, Miami, Florida, USA. New York: ACM, 2003: 263-266. DOI: 10.1145/604045.604094. |