欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• •    下一篇

求解带大量凸约束的随机优化问题的随机增广拉格朗日算法*

赵文深, 韩丛英, 金玲子   

  1. 中国科学院大学,数学科学学院,北京 100049
  • 收稿日期:2023-01-17 修回日期:2023-05-15
  • 通讯作者: †E-mail:hancy@ucas.ac.cn
  • 基金资助:
    *国家电网公司总部科技项目 (5700-202055486A-0-0-00) 资助

A stochastic augmented Lagrangian method for stochastic nonconvex nonsmooth programs with many convex constraint

ZHAO Wenshen, HAN Congying, JIN Lingzi   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-01-17 Revised:2023-05-15

摘要: 随机梯度法广泛应用于机器学习并得到了很大成功,但许多随机方法主要针对无约束或简单约束的优化问题。本文考虑带有正则项和大量凸约束的非凸随机优化问题,经典增广拉格朗日法是此问题的一种解法,但精确梯度信息的要求使其不适合大量约束问题。为此本文提出了一个随机增广拉格朗日算法,该算法用随机一阶信息代替增广拉格朗日法的精确梯度,每步迭代仅使用一组抽样梯度和部分的约束梯度。对该算法,我们证明了其可以在O(ε-8)次方后找到ε-KKT近似点。我们在多分类Neyman Pearson问题上进行数值实验,实验结果验证了算法的有效性。

关键词: 随机梯度法, 增广拉格朗日, 非线性优化, 约束优化

Abstract: The stochastic gradient methods has been widely used in machine learning, but most existing works aim for unconstraint or simple constraint problems. In this paper, we consider the nonconvex stochastic programs with many functional convex constraints. The deterministic augmented Lagrangian method is a classic algorithm for such problem, but the requirement of accurate gradient information makes it impractical for the case with large-scale constraints. To solve such problems, we propose a novel stochastic augmented Lagrangian method, which is called CSALM(composite stochastic augmented Lagrangian method). The CSALM uses stochastic gradient to approximate the accurate gradient, and it only sample stochastic gradients and batch constraint gradient per iteration. We establish the convergence theory of CSALM and show that the CSALM can find an ϵ-KKT point after O(ϵ-8) iterations. The numerical experiments on the multi-class Neyman-Pearson classification problem(mNPC) demonstrate the of efficiency CSALM.

Key words: stochastic gradient, augmented Lagrangian, nonlinear optimization, constraint optimization

中图分类号: