[1] Turcotte D L, Schubert G. Geodynamics[M]. 3th ed. Cambridge: Cambridge University Press, 2014. [2] Schubert G, Turcotte D L, Olson P. Mantle convection in the earth and planets[M]. Cambridge: Cambridge University Press, 2001. [3] Driscoll P, Bercovici D. On the thermal and magnetic histories of earth and venus: influences of melting, radioactivity, and conductivity[J]. Physics of the Earth and Planetary Interiors, 2014, 236: 36-51. DOI: 10.1016/j.pepi.2014.08.004. [4] Zhang N, Parmentier E M, Liang Y. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification[J]. Journal of Geophysical Research: Planets, 2013, 118(9): 1789-1804. DOI: 10.1002/jgre.20121. [5] Grott M, Breuer D, Laneuville M. Thermo-chemical evolution and global contraction of mercury[J]. Earth and Planetary Science Letters, 2011, 307(1-2): 135-146. DOI: 10.1016/j.epsl.2011.04.040. [6] Breuer D, Hauck S A, Buske M, et al. Interior evolution of mercury[J]. Space Science Reviews, 2007, 132(2): 229-260. DOI: 10.1007/s11214-007-9228-9. [7] Christensen U R. A deep dynamo generating Mercury’s magnetic field[J]. Nature, 2006, 444(7122): 1056-1058. DOI: 10.1038/nature05342. [8] Guervilly C. Fingering convection in the stably stratified layers of planetary cores[J]. Journal of Geophysical Research: Planets, 2022, 127(11): e2022JE007350. DOI: 10.1029/2022JE007350. [9] Li Q, Sun T, Zhang Y G, et al. Atomic transport properties of liquid iron at conditions of planetary cores[J]. The Journal of Chemical Physics, 2021, 155(19): 194505. DOI: 10.1063/5.0062081. [10] Edgington A L, Vočadlo L, Stixrude L, et al. The top-down crystallisation of Mercury’s core[J]. Earth and Planetary Science Letters, 2019, 528: 115838. DOI: 10.1016/j.epsl.2019.115838. [11] Stanley S, Bloxham J, Hutchison W E, et al. Thin shell dynamo models consistent with Mercury’s weak observed magnetic field[J]. Earth and Planetary Science Letters, 2005, 234(1-2): 27-38. DOI: 10.1016/j.epsl.2005.02.040. [12] Buffett B A, Huppert H E, Lister J R, et al. On the thermal evolution of the Earth’s core[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 7989-8006. DOI: 10.1029/95JB03539. [13] Williams Q. Bottom-up versus top-down solidification of the cores of small solar system bodies: constraints on paradoxical cores[J]. Earth and Planetary Science Letters, 2009, 284(3-4): 564-569. DOI: 10.1016/j.epsl.2009.05.019. [14] Hauck S A II, Margot J L, Solomon S C, et al. The curious case of Mercury’s internal structure[J]. Journal of Geophysical Research: Planets, 2013, 118(6): 1204-1220. DOI: 10.1002/jgre.20091. [15] Glassmeier K H, Auster H U, Motschmann U. A feedback dynamo generating Mercury’s magnetic field[J]. Geophysical Research Letters, 2007, 34(22): L22201. DOI: 10.1029/2007GL031662. [16] Tian Z L, Zuber M T, Stanley S. Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux[J]. Icarus, 2015, 260: 263-268. DOI: 10.1016/j.icarus.2015.07.019. [17] Spohn T. Physics of terrestrial planets and moons: an introduction and overview[M]//Treatise on Geophysics (Second Edition). Amsterdam: Elsevier, 2015: 1-22. DOI: 10.1016/b978-0-444-53802-4.00165-2. [18] Davaille A, Jaupart C. Transient high-Rayleigh-number thermal convection with large viscosity variations[J]. Journal of Fluid Mechanics, 1993, 253: 141-166. DOI: 10.1017/S0022112093001740. [19] Ogawa M. Evolution of the interior of Mercury influenced by coupled magmatism‐mantle convection system and heat flux from the core[J]. Journal of Geophysical Research: Planets, 2016, 121(2): 118-136. DOI: 10.1002/2015JE004832. [20] Moresi L N, Solomatov V S. Numerical investigation of 2D convection with extremely large viscosity variations[J]. Physics of Fluids, 1995, 7(9): 2154-2162. DOI: 10.1063/1.868465. [21] Reese C, Solomatov V S, Baumgardner J R, et al. Stagnant lid convection in a spherical shell[J]. Physics of the Earth and Planetary Interiors, 1999, 116(1-4): 1-7. DOI: 10.1016/S0031-9201(99)00115-6. [22] Date A W. Introduction to computational fluid dynamics[M]. New York: Cambridge University Press, 2005. [23] Davis G B, Hill J M. A moving boundary problem for the sphere[J]. IMA Journal of Applied Mathematics, 1982, 29(1): 99-111. DOI: 10.1093/imamat/29.1.99. [24] Hauck S A, Dombard A J, Phillips R J, et al. Internal and tectonic evolution of mercury[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 713-728. DOI: 10.1016/j.epsl.2004.03.037. [25] Roberts J H, Barnouin O S. The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury[J]. Journal of Geophysical Research: Planets, 2012, 117(E2): E02007. DOI: 10.1029/2011JE003876. [26] Michel N C, Hauck S A II, Solomon S C, et al. Thermal evolution of Mercury as constrained by MESSENGER observations[J]. Journal of Geophysical Research: Planets, 2013, 118(5): 1033-1044. DOI: 10.1002/jgre.20049. [27] Knibbe J S, van Westrenen W. The thermal evolution of Mercury’s Fe-Si core[J]. Earth and Planetary Science Letters, 2018, 482: 147-159. DOI: 10.1016/j.epsl.2017. 11.006. [28] McDonough W F, Yoshizaki T. Terrestrial planet compositions controlled by accretion disk magnetic field[J]. Progress in Earth and Planetary Science, 2021, 8(1): 1-12. DOI: 10.1186/s40645-021-00429-4. [29] Peplowski P N, Evans L G, Hauck S A II, et al. Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution[J]. Science, 2011, 333(6051): 1850-1852. DOI: 10.1126/science.1211576. [30] Padovan S, Tosi N, Plesa A C, et al. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures[J]. Nature Communications, 2017, 8: 1945. DOI: 10.1038/s41467-017-01692-0. [31] Stacey F D, Loper D E. The thermal boundary-layer interpretation of D″and its role as a plume source[J]. Physics of the Earth and Planetary Interiors, 1983, 33(1): 45-55. DOI: 10.1016/0031-9201(83)90006-7. [32] Davies G F. Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B9): 10467-10480. DOI: 10.1029/JB093iB09p10467. [33] Sleep N H. Hotspots and mantle plumes: some phenomenology[J]. Journal of Geophysical Research, 1990, 95(B5): 6715-6736. DOI: 10.1029/JB095iB05p06715. [34] Lay T, Hernlund J, Buffett B A. Core-mantle boundary heat flow[J]. Nature Geoscience, 2008, 1(1): 25-32. DOI: 10.1038/ngeo.2007.44. |