[1] Worsley T R, Nance D M, Moody J B. Global tectonics and eustasy for the past 2 billion years[J]. Marine Geology, 1984, 58(3/4): 373-400. DOI: 10.1016/0025-3227(84)90209-3. [2] Nance R D, Worsley T R, Moody J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1): 72-79. DOI: 10.1038/scientificamerican0788-72. [3] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162. DOI: 10.1016/S0012-8252(02)00073-9. [4] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. DOI: 10.1016/j.precamres.2007.04.021. [5] Mitchell R N, Kilian T M, Evans D A D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 2012, 482(7384): 208-211. DOI: 10.1038/nature10800. [6] Evans D A D. True polar wander and supercontinents[J]. Tectonophysics, 2003, 362(1/2/3/4): 303-320. DOI: 10.1016/S0040-1951(02)000642-X. [7] Voice P J, Kowalewski M, Eriksson K A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains[J]. The Journal of Geology, 2011, 119(2): 109-126. DOI: 10.1086/658295. [8] Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8): 554-558. DOI: 10.1038/ngeo259. [9] Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust[J]. Geological Society of America Bulletin, 2013, 125(1/2): 14-32. DOI: 10.1130/b30722.1. [10] Hawkesworth C, Cawood P, Kemp T, et al. A matter of preservation[J]. Science, 2009, 323(5910): 49-50. DOI: 10.1126/science.1168549. [11] Hawkesworth C J, Cawood P A, Dhuime B, et al. Earth’s continental lithosphere through time[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 169-198. DOI: 10.1146/annurev-earth-063016-020525. [12] Condie K C, Pisarevsky S A, Puetz S J. LIPs, orogens and supercontinents: the ongoing Saga[J]. Gondwana Research, 2021, 96: 105-121. DOI: 10.1016/j.gr.2021.05.002. [13] Liu Y B, Mitchell R N, Brown M, et al. Linking metamorphism and plate boundaries over the past 2 billion years[J]. Geology, 2022, 50(5): 631-635. DOI: 10.1130/g49637.1. [14] Sundell K E, MacDonald F A. The tectonic context of hafnium isotopes in zircon[J]. Earth and Planetary Science Letters, 2022, 584: 117426. DOI: 10.1016/j.epsl.2022.117426. [15] Roberts N M W, Spencer C J. The zircon archive of continent formation through time[J]. Geological Society, London, Special Publications, 2015, 389(1): 197-225. DOI: 10.1144/sp389.14. [16] Zhu Z Y, Campbell I H, Allen C M, et al. S-type granites: their origin and distribution through time as determined from detrital zircons[J]. Earth and Planetary Science Letters, 2020, 536: 116140. DOI: 10.1016/j.epsl.2020.116140. [17] Burnham A D, Berry A J. Formation of Hadean granites by melting of igneous crust[J]. Nature Geoscience, 2017, 10(6): 457-461. DOI: 10.1038/ngeo2942. [18] Tang M, Chu X, Hao J H, et al. Orogenic quiescence in Earth’s middle age[J]. Science, 2021, 371(6530): 728-731. DOI: 10.1126/science.abf1876. [19] Zou X Y, Qin K Z, Han X L, et al. Insight into zircon REE oxy-barometers: a lattice strain model perspective[J]. Earth and Planetary Science Letters, 2019, 506: 87-96. DOI: 10.1016/j.epsl.2018.10.031. [20] Yakymchuk C, Kirkland C L, Clark C. Th/U ratios in metamorphic zircon[J]. Journal of Metamorphic Geology, 2018, 36(6): 715-737. DOI: 10.1111/jmg.12307. [21] Bell E A, Boehnke P, Harrison T M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration[J]. Geochimica et Cosmochimica Acta, 2016, 191: 187-202. DOI: 10.1016/j.gca.2016.07.016. [22] Aitchison J, Greenacre M. Biplots of compositional data[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2002, 51(4): 375-392. DOI: 10.1111/1467-9876.00275. [23] Zuo R G, Xia Q L, Wang H C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211. DOI: 10.1016/j.apgeochem.2012.10.031. [24] Ahrens L H. The lognormal distribution of the elements (2)[J]. Geochimica et Cosmochimica Acta, 1954, 6(2/3): 121-131. DOI: 10.1016/0016-7037(54)90021-6. [25] Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. DOI: 10.1016/S0893-6080(05)80023-1. [26] Zhao Y, Zhang Y G, Geng M, et al. Involvement of slab-derived fluid in the generation of Cenozoic basalts in northeast China inferred from machine learning[J]. Geophysical Research Letters, 2019, 46(10): 5234-5242. DOI: 10.1029/2019gl082322. [27] Mulder J A, Cawood P A. Evaluating preservation bias in the continental growth record against the monazite archive[J]. Geology, 2022, 50(2): 243-247. DOI: 10.1130/g49416.1. [28] Spencer C J, Cawood P A, Hawkesworth C J, et al. Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record[J]. Geology, 2014, 42(5): 451-454. DOI: 10.1130/g35363.1. [29] Brown M, Johnson T. Metamorphism and the evolution of subduction on earth[J]. American Mineralogist, 2019, 104(8): 1065-1082. DOI: 10.2138/am-2019-6956. [30] Wang C, Mitchell R N, Murphy J B, et al. The role of megacontinents in the supercontinent cycle[J]. Geology, 2021, 49(4): 402-406. DOI: 10.1130/g47988.1. [31] Brown M, Johnson T. Time’s arrow, time’s cycle: granulite metamorphism and geodynamics[J]. Mineralogical Magazine, 2019, 83(3): 323-338. DOI: 10.1180/mgm.2019.19. [32] Pesonen L J, Evans D A D, Veikkolainen T, et al. Precambrian supercontinents and supercycles:an overview[M]//Ancient Supercontinents and the Paleogeography of Earth. Amsterdam: Elsevier, 2021: 1-50. DOI: 10.1016/b978-0-12-818533-9.00020-5. [33] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. DOI: 10.1016/j.earscirev.2018.10.003. [34] Roscoe S M, Card K D. The reappearance of the Huronian in Wyoming: rifting and drifting of ancient continents[J]. Canadian Journal of Earth Sciences, 1993, 30(12): 2475-2480. DOI: 10.1139/e93-214. [35] Piper J D A. A planetary perspective on Earth evolution: lid tectonics before plate tectonics[J]. Tectonophysics, 2013, 589: 44-56. DOI: 10.1016/j.tecto.2012.12.042. [36] Evans D A D. Reconstructing pre-pangean supercontinents[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1735-1751. DOI: 10.1130/b30950.1. [37] Bleeker W. The late Archean record: a puzzle in Ca. 35 pieces[J]. Lithos, 2003, 71(2/3/4): 99-134. DOI: 10.1016/j.lithos.2003.07.003. [38] Barley M E, Bekker A, Krapež B. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 156-171. DOI: 10.1016/j.epsl.2005.06.062. [39] Salminen J, Pehrsson S, Evans D A D, et al. Neoarchean-Paleoproterozoic supercycles[M]//Ancient Supercontinents and the Paleogeography of Earth. Amsterdam: Elsevier, 2021: 465-498. DOI: 10.1016/b978-0-12-818533-9.00014-x. [40] Condie K C, O'Neill C, Aster R C. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth[J]. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 294-298. DOI: 10.1016/j.epsl.2009.03.033. [41] Spencer C J, Murphy J B, Kirkland C L, et al. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle[J]. Nature Geoscience, 2018, 11(2): 97-101. DOI: 10.1038/s41561-017-0051-y. [42] Hoffman P F. Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga)[J]. Geology, 1989, 17(2): 135. DOI: 10.1130/0091-7613(1989)0170135: solsfg>2.3.co;2. [43] Hoffman P F. Tectonic genealogy of North America [C/OL]//van der Pluijm B A, Marshak S. Earth structure: an introduction to structural geology and tectonics. New York:McGraw-Hill, 1997: 459-464[2023-05-01]. https://ens9004-infd.mendoza.edu.ar/sitio/upload/05-VAN DER PLUIJM & MARSHAK-Earth Structure Introduction to Structural Geology and Tectonics.pdf. [44] Zhao G C, Sun M, Wilde S A, et al. A paleo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123. DOI: 10.1016/j.earscirev.2004.02.003. [45] Valentine J W, Moores E M. Plate-tectonic regulation of faunal diversity and sea level: a model[J]. Nature, 1970, 228(5272): 657-659. DOI: 10.1038/228657a0. [46] McMenamin M A, McMenamin D L S. The emergence of animals: the Cambrian breakthrough[M]. New York: Columbia University Press, 1990. [47] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67. DOI: 10.1016/S0012-821X(01)00595-7. [48] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 1999, 173(3): 171-181. DOI: 10.1016/S0012-821X(99)00240-X. [49] Rogers J J W. A history of continents in the past three billion years[J]. The Journal of Geology, 1996, 104(1): 91-107. DOI: 10.1086/629803. [50] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. DOI: 10.1016/S0301-9268(02)00209-7. [51] Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1/2): 135-158. DOI: 10.1016/j.chemgeo.2006.01.005. [52] Li X H, Li Z X, Zhou H W, et al. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: petrogenesis and tectonic significance [J]. Science in China Series D: Earth Science, 2003, 46: 73-83. DOI: 10.1360/03dz9029. [53] Spencer C J, Hawkesworth C, Cawood P A, et al. Not all supercontinents are created equal: Gondwana-Rodinia case study[J]. Geology, 2013, 41(7): 795-798. DOI: 10.1130/g34520.1. [54] Doucet L S, Li Z X, Ernst R E, et al. Coupled supercontinent-mantle plume events evidenced by oceanic plume record[J]. Geology, 2020, 48(2): 159-163. DOI: 10.1130/g46754.1. [55] Torsvik T H, Cocks L R M. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030. DOI: 10.1016/j.gr.2013.06.012. |