欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

有机质参与铅锌成矿作用研究——以兰坪盆地金顶铅锌矿床为例*

侯信高1, 琚宜文1†, 冯宏业1,2, 肖蕾1, 乔鹏1,3, 陶丽茹1, 王鹏1, 王巍1, 高健1   

  1. 1 中国科学院大学地球与行星科学学院 中国科学院计算地球动力学重点实验室,北京 100049;
    2 中国地质科学院矿产资源研究所,北京 100037;
    3 中国地质调查局油气资源调查中心,北京 100083
  • 收稿日期:2024-01-24 修回日期:2024-03-29 发布日期:2024-04-24
  • 通讯作者: E-mail:juyw03@163.com
  • 基金资助:
    *国家自然科学基金面上项目(42372153, 41872160)、国家自然科学基金重点项目(41530315)和中央高校基本科研业务费专项资助

Organic mineralization in lead-zinc deposits — a case study of the Jinding lead-zinc deposit, Lanping basin

HOU Xingao1, JU Yiwen1, FENG Hongye1,2, XIAO Lei1, QIAO Peng1,3, TAO Liru1, WANG Peng1, WANG Wei1, GAO Jian1   

  1. 1 CAS Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    2 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
    3 Oil and Gas Survey, China Geological Survey, Beijing 100083, China
  • Received:2024-01-24 Revised:2024-03-29 Published:2024-04-24

摘要: 滇西北兰坪盆地是中新生代盆地,经历了多期次构造热演化过程。在盆地新生代成矿过程中,金顶铅锌矿床内部有机质丰富且与矿体相伴生,但有机质参与铅锌成矿的方式与过程仍存在争议。研究表明:在盆地浅层非强酸性流体介质和<200℃流体温度条件下,与金属离子形成络合物并不是有机质参与金顶铅锌矿化成矿的主要方式。金顶矿区有机质普遍经历过生物降解,但仍含有可检的正构烷烃、类异戊间二烯烃以及萘、菲、联苯等化合物,少量有机质已不含正构烷烃和类异戊间二烯烃,显示甾烷初步降解的特征,无25-降霍烷生成,总体符合2~5级生物降解程度的特征,与细菌还原硫酸盐作用(bacterial sulfate reduction, BSR)相吻合。矿床内成矿方解石的δ13CPDB与δ18OPDB值之间无明显相关性,其稀土元素分布模式、Y/Ho值以及Sr含量等指标与热化学硫酸盐还原作用(thermochemical sulfate reduction, TSR)成因的方解石的特征不同,且矿床中固体沥青的δ13CPDB值(-27‰)未显示出小于烃源岩δ13CPDB(估算值)的特征,因此认为TSR作用可能在盆地局部浅层区域内不起主要作用。硫化物δ34S的估算结果显示,由有机质热解生成的H2S的δ34S值为-5‰~0,这与矿床金属硫化物δ34S直方图中重硫同位素峰值的范围(-8‰~-2‰)相吻合。基于实际成矿特征,考虑1/3的铅锌矿石与有机质热解作用相关,且古油藏原油含硫量为1.5%,则成矿所需原油量为9687万吨,这与地质事实不相矛盾,表明有机质热解也可能参与成矿作用。综上,在盆地演化过程中,有机质主要通过古油藏形成阶段的BSR作用和盆地深部高温成矿阶段的TSR作用或有机质热解作用参与铅锌成矿。

关键词: 有机质参与成矿作用, 金顶铅锌矿床, 细菌硫酸盐还原, 热化学硫酸盐还原, 有机质热解

Abstract: A large amount of organic matter (OM) is associated with ore bodies in the Jinding lead-zinc deposit, Lanping Basin, the northwestern Yunnan province, but the way and process of OM participating in lead-zinc mineralization are still controversial. OM in the deposit has generally undergone biodegradation, and much of it still contains detectable n-alkanes, isoprenoids, naphthalene, phenanthrene, biphenyl, and other compounds. A small portion of OM does not contain n-alkanes and isoprenoids but shows the characteristics of initial degradation of steranes while no 25-norhopane is generated, which is generally in line with the characteristics of grade 2~5 biodegradation, consistent with the bacterial sulfate reduction (BSR). There is no significant correlation between the δ13CPDB and δ18OPDB values of calcites, and their distribution patterns of REEs, Y/Ho values, and Sr contents are also inconsistent with the characteristics of thermochemical sulfate reduction (TSR) calcites. The δ13CPDB values (~-27‰) of bitumen in the deposit are not less than that of source rocks (estimated value), so it is reasonable to infer that TSR is not the main way for OM to participate in the lead-zinc mineralization. The estimation results of δ34S show that the δ34S of H2S generated by the thermal decomposition of OM is from -5‰ to 0, which is consistent with the range of heavy sulfur isotope peaks (-8‰~-2‰) in the δ34S value histogram of metal sulfides in the deposit. Based on mineralization characteristics, if 1/3 of the lead-zinc ore is related to the thermal decomposition of OM, and the sulfur content of crude oil in the paleo reservoir is 1.5%, the amount of crude oil required for mineralization is calculated to be about 96.87 million tons, which is not contradictory to geological facts. Therefore, we suggest that OM is mainly involved in lead-zinc mineralization through BSR in the formation stage of paleo reservoirs and thermal decomposition of OM in the high-temperature mineralization stage, while TSR might does not occur on a large scale.

Key words: Organic mineralization, Jinding lead-zinc deposit, Bacterial sulfate reduction, Thermochemical sulfate reduction, Thermal decomposition

中图分类号: