[1] Blömker D, Gugg C, Raible M.Thin-film-growth models: roughness and correlation functions[J]. European Journal of Applied Mathematics, 2002, 13(4): 385-402. DOI: 10.1017/S0956792502004886. [2] Stein O, Winkler M.Amorphous molecular beam epitaxy: global solutions and absorbing sets[J]. European Journal of Applied Mathematics, 2005, 16(6): 767-798. DOI: 10.1017/S0956792505006315. [3] Blömker D, Flandoli F, Romito M.Markovianity and ergodicity for a surface growth PDE[J]. The Annals of Probability, 2009, 37(1): 275-313. DOI: 10.1214/08-aop403. [4] Blömker D, Romito M.Regularity and blow up in a surface growth model[J]. Dynamics of Partial Differential Equations, 2009, 6(3): 227-252. DOI: 10.4310/DPDE.2009.v6.n3.a2. [5] Blömker D, Romito M.Local existence and uniqueness in the largest critical space for a surface growth model[J]. Nonlinear Differential Equations and Applications, 2012, 19(3): 365-381. DOI: 10.1007/s00030-011-0133-2. [6] Ożański W S, Robinson J C.Partial regularity for a surface growth model[J]. SIAM Journal on Mathematical Analysis, 2019, 51(1): 228-255. DOI: 10.1137/18m1166821. [7] Ożański W S.A sufficient integral condition for local regularity of solutions to the surface growth model[J]. Journal of Functional Analysis, 2019, 276: 2990-3013. DOI: 10.1016/j.jfa.2019.02.017. [8] Burczak J, Ożański W S, Seregin G.On regularity properties of a surface growth model[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2021, 151: 1869-1892. DOI: 10.1017/prm.2020.84. [9] Wang Y Q, Huang Y K, Wu G, et al.Partial regularity of suitable weak solutions of the model arising in amorphous molecular beam epitaxy[J]. Acta Mathematica Sinica, English Series, 2023, 39(11): 2219-2246. DOI: 10.1007/s10114-023-2458-2. [10] Bahouri H, Chemin J Y, Danchin R.Fourier analysis and nonlinear partial differential equations[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-16830-7. [11] Wu G, Yuan J.Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces[J]. Journal of Mathematical Analysis. and Applications, 2008, 340(2): 1326-1335. DOI: 10.1016/j.jmaa.2007.09.060. |