[1] Fernandes D, Pitié F, Cáceres G, et al.Thermal energy storage: “How previous findings determine current research priorities”[J]. Energy, 2012, 39(1): 246-257. DOI:10.1016/j.energy.2012.01.024. [2] Kadam P S, Vadirajacharya K.Super conducting magnetic energy storage based DVR[C]//2012 IEEE Students' Conference on Electrical, Electronics and Computer Science. March 1-2, 2012, Bhopal, India. IEEE, 2012: 1-5. DOI:10.1109/SCEECS.2012.6184811. [3] Lai J F, Song Y D, Du X Q.Hierarchical coordinated control of flywheel energy storage matrix systems for wind farms[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 48-56. DOI:10.1109/TMECH.2017.2654067. [4] Mahmoud M, Ramadan M, Olabi A G, et al.A review of mechanical energy storage systems combined with wind and solar applications[J]. Energy Conversion and Management, 2020, 210: 112670. DOI:10.1016/j.enconman.2020.112670. [5] Pérez-Díaz J I, Chazarra M, García-González J, et al. Trends and challenges in the operation of pumped-storage hydropower plants[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 767-784. DOI:10.1016/j.rser.2015.01.029. [6] Chen H, Li X R, Gao H, et al.Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay[J]. Applied Energy, 2019, 247: 13-23. DOI:10.1016/j.apenergy.2019.04.034. [7] Kritayakornupong C.Structural and dynamical properties of the V3+ ion in dilute aqueous solution: An ab initio QM/MM molecular dynamics simulation[J]. Journal of Computational Chemistry, 2009, 30(16): 2777-2783. DOI:10.1002/jcc.21278. [8] Moro F, Trovò A, Bortolin S, et al.An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment[J]. Journal of Power Sources, 2017, 340: 229-241. DOI:10.1016/j.jpowsour.2016.11.042. [9] Sepehr F, Paddison S J.The solvation structure and thermodynamics of aqueous vanadium cations[J]. Chemical Physics Letters, 2013, 585: 53-58. DOI:10.1016/j.cplett.2013.08.089. [10] Shah A A, Al-Fetlawi H, Walsh F C.Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(3): 1125-1139. DOI:10.1016/j.electacta.2009.10.022. [11] Shah A A, Watt-Smith M J, Walsh F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008,53(27):8087-8100.DOI:10.1016/j.electacta.2008.05.067. [12] Ye Q, Hu J, Cheng P, et al.Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364. DOI:10.1016/j.jpowsour.2015.06.138. [13] You D J, Zhang H M, Chen J.A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009,54(27):6827-6836. DOI:10.1016/j.electacta.2009.06.086. [14] Grieves M, Vickers J.Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//Transdisciplinary Perspectives on Complex Systems. Cham: Springer International Publishing, 2016: 85-113. DOI:10.1007/978-3-319-38756-7_4. [15] Grieves M W.Virtually intelligent product systems: Digital and physical twins[M]//Complex Systems Engineering: Theory and Practice. Reston, VA: AIAA,Inc., 2019:175-200. DOI:10.2514/5.9781624105654.0175.0200. [16] Zhang L. Cold thinking about digital twin and modeling and simulation techniques behind it[J/OL]. Journal of System Simulation. (2020-04-18)[2025-02-14].https://kns.cnki.net/kcms2/article/abstract?v=kjkRiloLuecrcfWw--PTQqXH708EIsLl1UAb9geJVzrCO00q9ktoZAMbK65nF997mI30NSKqMYHS9SWjG1TdA1aNZNiQOyw0hyRgZcfQMfbu0zlxli5oEuSUC_-koiJmML8ttnHr3xUUUfTenWvkuMfZpgt1RSaiRS9mEJ0OjtDCfss3AVnE755U56XkanG6XAO4CJcqr5Q=&uniplatform=NZKPT&language=CHS. [17] Tao F, Zhang H, Liu A, et al.Digital twin in industry: State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. DOI:10.1109/TII.2018.2873186. [18] Tao F, Zhang M.Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017, 5: 20418-20427.DOI:10.1109/ACCESS.2017.2756069. [19] Tao F, Zhang M, Liu Y S, et al.Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67(1): 169-172. DOI: 10.1016/j.cirp.2018.04.055. [20] Tao F, Zhang M, Nee A Y C. Digital Twin Driven Smart Manufacturing[M]. Amsterdam: Elsevier, 2019. [21] Tuegel E J, Ingraffea A R, Eason T G, et al.Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011(1): 154798. DOI:10.1155/2011/154798. [22] Tao F, Liu W, Zhang M, et al.Five-dimension digital twin model and its ten applications[J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2019, 25(1):1-18. DOI:10.13196/j.cims.2019.01.001. [23] Grieves M. Digital twin: manufacturing excellence through virtual factory replication[EB/OL]. (2015-4-20)[2025-02-14].https://www.researchgate.net/publication/275211047. [24] Liao M, Renaud G, Bombardier Y.Airframe digital twin technology adaptability assessment and technology demonstration[J]. Engineering Fracture Mechanics, 2020, 225: 106793. DOI:10.1016/j.engfracmech.2019.106793. [25] Canedo A.Industrial IoT lifecycle via digital twins[C]//Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis. Pittsburgh Pennsylvania. ACM, 2016: 1. DOI:10.1145/2968456.2974007. [26] Schleich B, Anwer N, Mathieu L, et al.Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017, 66(1): 141-144. DOI:10.1016/j.cirp.2017.04.040. [27] Yu Y, Fan S T, Peng G W, et al.Study on application of digital twin model in product configuration management[J]. Aeronautical manufacturing technology, 2017, 60(7): 41-45. DOI:10.16080/j.issn1671-833x.2017.07.041 in Chinese. [28] Zhang H, Liu Q, Chen X, et al.A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access, 2017, 5: 26901-26911.DOI:10.1109/ACCESS.2017.2766453. [29] Fang Y L, Peng C, Lou P, et al.Digital-twin-based job shop scheduling toward smart manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6425-6435. DOI:10.1109/TII.2019.2938572. [30] Qamsane Y, Chen C Y, Balta E C, et al.A unified digital twin framework for real-time monitoring and evaluation of smart manufacturing systems[C]//2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). August 22-26, 2019. Vancouver, BC, Canada. IEEE, 2019: 1394-1401. DOI:10.1109/coase.2019.8843269. [31] Vespoli S, Grassi A, Guizzi G, et al.Evaluating the advantages of a novel decentralised scheduling approach in the Industry 4.0 and Cloud Manufacturing era[J]. IFAC-Papers on Line, 2019, 52(13): 2170-2176. DOI:10.1016/j.ifacol.2019.11.527. [32] Weyer S, Meyer T, Ohmer M, et al.Future modeling and simulation of CPS-based factories: an example from the automotive industry[J]. IFAC-PapersOnLine, 2016, 49(31): 97-102. DOI:10.1016/j.ifacol.2016.12.168. [33] Aivaliotis P, Georgoulias K, Chryssolouris G.The use of Digital Twin for predictive maintenance in manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(11): 1067-1080.DOI:10.1080/0951192X.2019.1686173. [34] Li C Z, Mahadevan S, Ling Y, et al.Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. DOI:10.2514/1.J055201. [35] Liu D, Du Y, Chai W J, et al.Digital twin and data-driven quality prediction of complex die-casting manufacturing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8119-8128. DOI:10.1109/TII.2022.3168309. [36] Uhlemann T H J, Schock C, Lehmann C, et al. The digital twin: Demonstrating the potential of real time data acquisition in production systems[J]. Procedia Manufacturing, 2017, 9: 113-120. DOI:10.1016/j.promfg.2017.04.043. [37] Aydemir H, Zengin U, Durak U.The digital twin paradigm for aircraft review and outlook[C]//AIAA Scitech 2020 Forum. 6-10 January 2020, Orlando, FL. Reston, Virginia: AIAA, 2020: 0553. DOI:10.2514/6.2020-0553. [38] Bauer P, Stevens B, Hazeleger W.A digital twin of Earth for the green transition[J]. Nature Climate Change, 2021, 11: 80-83. DOI:10.1038/s41558-021-00986-y. [39] Coraddu A, Oneto L, Baldi F, et al.Data-driven ship digital twin for estimating the speed loss caused by the marine fouling[J]. Ocean Engineering, 2019, 186: 106063. DOI:10.1016/j.oceaneng.2019.05.045. [40] Lo C K, Chen C H, Zhong R Y.A review of digital twin in product design and development[J]. Advanced Engineering Informatics, 2021, 48: 101297. DOI:10.1016/j.aei.2021.101297. [41] Schrotter G, Hürzeler C.The digital twin of the city of Zurich for urban planning[J]. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88(1): 99-112. DOI:10.1007/s41064-020-00092-2. [42] Li W H, Rentemeister M, Badeda J, et al.Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage, 2020, 30: 101557. DOI:10.1016/j.est.2020.101557. [43] Merkle L, Pöthig M, Schmid F.Estimate e-golf battery state using diagnostic data and a digital twin[J]. Batteries, 2021, 7(1): 15. DOI:10.3390/batteries7010015. [44] Merkle L, Segura A S, Torben Grummel J, et al.Architecture of a digital twin for enabling digital services for battery systems[C]//2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). May 6-9, 2019, Taipei, China. IEEE, 2019: 155-160. DOI:10.1109/ICPHYS.2019.8780347. [45] Zhang T L, Liu X T, Luo Z W, et al.Time series behavior modeling with digital twin for Internet of Vehicles[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 271. DOI:10.1186/s13638-019-1589-8. [46] Qu X, Song Y, Liu D, et al.Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model[J]. Microelectronics Reliability, 2020, 114(5): 113857. DOI:10.1016/j.microrel.2020.113857. [47] Chun H Y, Kim J, Yu J, et al.Real-time parameter estimation of an electrochemical lithium-ion battery model using a long short-term memory network[J]. IEEE Access, 2020, 8: 81789-81799. DOI:10.1109/ACCESS.2020.2991124. [48] Wang W W, Wang J, Tian J P, et al.Application of digital twin in smart battery management systems[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 57. DOI:10.1186/s10033-021-00577-0. [49] Zou W J, Kim Y B, Jung S.Capacity fade prediction for vanadium redox flow batteries during long-term operations[J]. Applied Energy, 2024, 356: 122329. DOI:10.1016/j.apenergy.2023.122329. [50] Barra P H A, de Carvalho W C, Menezes T S, et al. A review on wind power smoothing using high-power energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110455. DOI:10.1016/j.rser.2020.110455. [51] Saber H, Moeini-Aghtaie M, Ehsan M, et al.A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 414-422. [52] Wu Y N, Zhang T, Gao R, et al.Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid[J]. Applied Energy, 2021, 287: 116562. DOI:10.1016/j.apenergy.2021.116562. [53] Deng Y W, Wang P F, Morabito A, et al.Dynamic analysis of variable-speed pumped storage plants for mitigating effects of excess wind power generation[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: 107453. DOI: 10.1016/j.ijepes.2021.107453. [54] Li J H, Hu D C, Mu G, et al.Optimal control strategy for large-scale VRB energy storage auxiliary power system in peak shaving[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 106007. DOI:10.1016/j.ijepes.2020.106007. [55] Liu D B, Jin Z T, Chen H Y, et al.Peak shaving and frequency regulation coordinated output optimization based on improving economy of energy storage[J]. Electronics, 2022, 11(1): 29. DOI:10.3390/electronics11010029. [56] Efkarpidis N A, Imoscopi S, Geidl M, et al.Peak shaving in distribution networks using stationary energy storage systems: A Swiss case study[J]. Sustainable Energy, Grids and Networks, 2023, 34: 101018. DOI:10.1016/j.segan.2023.101018. [57] Liu M Y, Wang H X, Han D Y, et al.Energy storage capacity competition-based demand response method in blockchain ancillary service market[J]. Energy Reports, 2022, 8: 344-351. DOI:10.1016/j.egyr.2022.10.287. [58] Wang H, Ali Pourmousavi S, Soong W L, et al.Battery and energy management system for vanadium redox flow battery: A critical review and recommendations[J]. Journal of Energy Storage, 2023, 58: 106384. DOI:10.1016/j.est.2022.106384. [59] Zhu H T, Lin B T.Digital twin-driven energy consumption management of integrated heat pipe cooling system for a data center[J]. Applied Energy, 2024, 373: 123840. DOI:10.1016/j.apenergy.2024.123840. [60] Chen Y X, Bao J, Xu Z J, et al.A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery[J]. Journal of Power Sources, 2023, 578: 233210. DOI:10.1016/j.jpowsour.2023.233210. [61] Khazaeli A, Vatani A, Tahouni N, et al.Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries[J]. Journal of Power Sources, 2015, 293: 599-612. DOI: 10.1016/j.jpowsour.2015.05.100. [62] Puleston T, Serra M, Costa-Castelló R.Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects[J]. Applied Energy, 2024, 355: 122271. DOI: 10.1016/j.apenergy. 2023.122271. [63] Tang A, Bao J, Skyllas-Kazacos M.Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162. DOI:10.1016/j.jpowsour.2013.09.071. [64] Wang H, Soong W L, Ali Pourmousavi S, et al.Thermal dynamics assessment of vanadium redox flow batteries and thermal management by active temperature control[J]. Journal of Power Sources, 2023, 570: 233027. DOI:10.1016/j.jpowsour.2023.233027. [65] Barote L, Marinescu C, Georgescu M.VRB modeling for storage in stand-alone wind energy systems[C]//2009 IEEE Bucharest PowerTech. June 28 - July 2, 2009, Bucharest, Romania. IEEE, 2009: 1-6. DOI:10.1109/PTC.2009.5281922. [66] Chahwan J, Abbey C, Joos G.VRB modelling for the study of output terminal voltages, internal losses and performance[C]//2007 IEEE Canada Electrical Power Conference. October 25-26, 2007, Montreal, QC, Canada. IEEE, 2007: 387-392. DOI:10.1109/EPC.2007.4520363. [67] Kroeze R C, Krein P T.Electrical battery model for use in dynamic electric vehicle simulations[C]//2008 IEEE Power Electronics Specialists Conference. June 15-19, 2008, Rhodes, Greece. IEEE, 2008: 1336-1342. DOI:10.1109/PESC.2008.4592119. [68] Zhan C J, Wu X G, Kromlidis S, et al.Two electrical models of the lead-acid battery used in a dynamic voltage restorer[J]. IEE Proceedings - Generation, Transmission and Distribution, 2003, 150(2): 175. DOI:10.1049/ip-gtd:20030124. |