[1] Sultani W, Chen C, Shah M.Real-world anomaly detection in surveillance videos[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6479-6488. DOI: 10.1109/CVPR.2018.00678. [2] Hasan M, Choi J, Neumann J, et al.Learning temporal regularity in video sequences[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 733-742. DOI: 10.1109/CVPR.2016.86. [3] Liu W, Luo W X, Lian D Z, et al.Future frame prediction for anomaly detection - A new baseline[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6536-6545. DOI: 10.1109/CVPR.2018.00684. [4] Luo W X, Liu W, Gao S H.A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//2017 IEEE International Conference on Computer Vision(ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 341-349. DOI: 10.1109/ICCV.2017.45. [5] Chong Y S, Tay Y H.Abnormal event detection in videos using spatiotemporal autoencoder[C]//Advances in Neural Networks-ISNN 2017. Cham: Springer International Publishing, 2017: 189-196. DOI: 10.1007/978-3-319-59081-3_23. [6] Xu D, Yan Y, Ricci E, et al.Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 2017, 156: 117-127. DOI: 10.1016/j.cviu.2016.10.010. [7] Hinami R, Mei T, Satoh S.Joint detection and recounting of abnormal events by learning deep generic knowledge[C]//2017 IEEE International Conference on Computer Vision(ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 3639-3647. DOI: 10.1109/ICCV.2017.391. [8] Coşar S, Donatiello G, Bogorny V, et al.Toward abnormal trajectory and event detection in video surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(3): 683-695. DOI: 10.1109/TCSVT.2016.2589859. [9] Zimek A, Schubert E, Kriegel H P.A survey on unsupervised outlier detection in high‐dimensional numerical data[J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2012, 5(5): 363-387. DOI: 10.1002/sam.11161. [10] Morais R, Le V, Tran T, et al.Learning regularity in skeleton trajectories for anomaly detection in videos[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019: 11988-11996. DOI: 10.1109/CVPR.2019.01227. [11] Flaborea A, Collorone L, D’ Amely Di Melendugno G M, et al. Multimodal motion conditioned diffusion model for skeleton-based video anomaly detection[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV). October 1-6, 2023, Paris, France. IEEE, 2023: 10284-95. DOI: 10.1109/ICCV51070.2023.00947. [12] Jain Y, Sharma A K, Velmurugan R, et al.PoseCVAE: anomalous human activity detection[C]//2020 25th International Conference on Pattern Recognition(ICPR). January 10-15, 2021, Milan, Italy. IEEE, 2021: 2927-2934. DOI: 10.1109/ICPR48806.2021.9412132. [13] Markovitz A, Sharir G, Friedman I, et al.Graph embedded pose clustering for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 10536-10544. DOI: 10.1109/CVPR42600.2020.01055. [14] Rodrigues R, Bhargava N, Velmurugan R, et al.Multi-timescale trajectory prediction for abnormal human activity detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision(WACV). March 1-5, 2020, Snowmass Village, CO, USA. IEEE, 2020: 2626-2634. DOI: 10.1109/WACV45572.2020.9093633. [15] Barbalau A, Ionescu R T, Georgescu M I, et al.SSMTL++: revisiting self-supervised multi-task learning for video anomaly detection[J]. Computer Vision and Image Understanding, 2023, 229: 103656. DOI: 10.1016/j.cviu.2023.103656. [16] Flaborea A, D’ Amely di Melendugno G M, D’Arrigo S, et al. Contracting skeletal kinematics for human-related video anomaly detection[J]. Pattern Recognition, 2024, 156: 110817. DOI: 10.1016/j.patcog.2024.110817. [17] Kanu-Asiegbu A M, Vasudevan R, Du X X. BiPOCO: Bi-directional trajectory prediction with pose constraints for pedestrian anomaly detection[EB/OL]. arXiv:2207.02281v1. (2022-07-05) [2025-03-18]. https://arxiv.org/abs/2207.02281v1. [18] Li N J, Chang F L, Liu C S.Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network[J]. Neurocomputing, 2022, 490: 482-494. DOI: 10.1016/j.neucom.2021.12.023. [19] Luo W X, Liu W, Gao S H.Normal graph: spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection[J]. Neurocomputing, 2021, 444: 332-337. DOI: 10.1016/j.neucom.2019.12.148. [20] 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 计算机应用, 2024, 44(8): 2551-2557. DOI: 10.11772/j.issn.1001-9081.2023081157. [21] 杨学存, 李杰华, 陈丽媛, 等. 基于人体骨架的扶梯乘客异常行为识别方法[J]. 安全与环境学报, 2024, 24(2): 636-643. DOI: 10.13637/j.issn.1009-6094.2022.2404. [22] 朱高伟. 基于骨架数据的列车司机异常行为检测[J]. 计算机科学与应用, 2024, 14(7): 42-50. DOI: 10.12677/csa.2024.147162. [23] Acsintoae A, Florescu A, Georgescu M I, et al.UBnormal: new benchmark for supervised open-set video anomaly detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 20111-20121. DOI: 10.1109/CVPR52688.2022.01951. [24] Gong D, Liu L Q, Le V, et al.Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). October 27-November 2, 2019, Seoul, Korea. IEEE, 2019: 1705-1714. DOI: 10.1109/ICCV.2019.00179. [25] Nguyen T N, Meunier J.Anomaly detection in video sequence with appearance-motion correspondence[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea. IEEE, 2019: 1273-1283. DOI: 10.1109/ICCV.2019.00136. [26] Maas A L, Hannun A Y, Ng A Y.Rectifier nonlinearities improve neural network acoustic models[C]//2013 International Conference on Machine Learning (ICML). June 16-21, 2013, Atlanta, Georgia, USA. PMLR, 2013, 30(1): 3. [27] Fan Y X, Wen G J, Li D R, et al.Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding, 2020, 195: 102920. DOI: 10.1016/j.cviu.2020.102920. [28] Lu Y W, Kumar K M, Nabavi S S, et al.Future frame prediction using convolutional VRNN for anomaly detection[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). September 18-21, 2019, Taipei, China. IEEE, 2019: 1-8. DOI: 10.1109/avss.2019.8909850. [29] Yu G, Wang S Q, Cai Z P, et al.Cloze test helps: effective video anomaly detection via learning to complete video events[C]//Proceedings of the 28th ACM International Conference on Multimedia. October 12-16, 2020, Seattle, WA, USA. ACM, 2020: 583-591. DOI: 10.1145/3394171.3413973. [30] Liu Z A, Nie Y W, Long C J, et al.A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 13568-13577. DOI: 10.1109/ICCV48922.2021.01333. [31] Zhang X Y, Li N Q, Li J W, et al.Unsupervised surface anomaly detection with diffusion probabilistic model[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV). October 1-6, 2023, Paris, France. IEEE, 2023: 6759-6768. DOI: 10.1109/ICCV51070.2023.00624. [32] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[EB/OL]. arXiv:2006.11239v2. (2020-12-16) [2025-03-18]. https://arxiv.org/abs/2006.11239. [33] Xiao Z S, Kreis K, Vahdat A. Tackling the generative learning trilemma with denoising diffusion GANs[EB/OL]. arXiv:2112.07804v2. (2022-04-04) [2025-03-18]. https://arxiv.org/abs/2112.07804v2. [34] Krizhevsky A, Sutskever I, Hinton G E.ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386. [35] Sofianos T, Sampieri A, Franco L, et al.Space-time-separable graph convolutional network for pose forecasting[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 11189-11198. DOI: 10.1109/ICCV48922.2021.01102. [36] He K M, Zhang X Y, Ren S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [37] Ronneberger O, Fischer P, Brox T.U-Net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. October 5-9, 2015, Munich, Germany. Cham: Springer International Publishing, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. [38] Shi L S, Wang L, Zhou S P, et al.Trajectory unified transformer for pedestrian trajectory prediction[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV). October 1-6, 2023, Paris, France. IEEE, 2023: 9641-9650. DOI: 10.1109/ICCV51070.2023.00887. [39] 余保玲, 虞松坤, 孙耀然, 等. 基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法[J]. 中国科学院大学学报, 2020, 37(6): 828-834. DOI:10.7523/j.issn.2095-6134.2020.06.015. [40] Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[EB/OL]. arXiv:1409.2329v5. (2015-02-19) [2025-03-18]. https://arxiv.org/abs/1409.2329. |