欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• •    

离群值剔除后的Behrens-Fisher问题推断*

牟唯嫣1, 汪俊豪1, 熊世峰2,3†   

  1. 1 北京建筑大学理学院,北京 102616;
    2 中国科学院大学数学科学学院,北京 101408;
    3 中国科学院数学与系统科学研究院,北京 100190
  • 通讯作者: E-mail: xiong@amss.ac.cn
  • 基金资助:
    *国家重点研发计划(2021YFA1000300, 2021YFA1000301 和 2021YFA1000303)、国家自然科学基金(12171462)和北京建筑大学研究生创新项目(PG2025177)资助

Inference for the Behrens-Fisher problem after outlier removal

MU Weiyan1, WANG Junhao1, XIONG Shifeng2,3   

  1. 1 School of Sciences, Beijing University of Civil Engineering and Architecture, Beijing 102616, China;
    2 School of Mathematical Sciences, University of Chinese Academy and Science, Beijing 101408, China;
    3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

摘要: 选择推断旨在修正采用 “检测-遗忘 ”策略处理异常值对统计推断所造成的偏差。在本文中,我们研究了经典的Behrens-Fisher问题。在数据含有异常值时,利用选择推断修正了传统的Welch区间和基于广义枢轴量的置信区间,给出了若干异方差下两正态总体均值差的新置信区间。通过蒙特卡罗模拟和实际数据分析比较了这些方法,对实际应用给出了参考。

关键词: 选择推断, 广义枢轴量, 截尾分布

Abstract: Selective inference aims at reducing the bias caused by the detect-and-forget strategy for handling statistical inferential problems in the presence of outliers. In this paper, we study selective inference for the classical Behrens-Fisher problem. Several selective confidence intervals for the difference between the means of two normal populations with unequal variances are presented, including the selective modifications of the traditional Welch’s interval and several generalized pivotal quantities-based intervals. These methods are compared via Monte Carlo simulations and a real data analysis. Suggestions for practical use are also discussed.

Key words: selective inference, generalized pivotal quantity, truncated distribution

中图分类号: