欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于改进KPConv的电力场景点云鲁棒语义分割方法研究*

刘海波1, 张苏1, 荣经国1, 严斐然2, 高原2, 杨洲2, 聂胜2,*   

  1. 1.国网经济技术研究院有限公司, 北京 102209;
    2.中国科学院空天信息创新研究院, 北京 100094
  • 收稿日期:2025-09-02 修回日期:2025-12-29 发布日期:2025-12-31
  • 通讯作者: †E-mail: niesheng@aircas.ac.cn
  • 基金资助:
    国家电网有限公司总部科技项目(1400-202456289A-1-1-ZN)资助

Robust Semantic Segmentation of Transmission Corridor Point Clouds Based on Improved KPConv

LIU Haibo1, ZHANG Su1, RONG Jingguo1, YAN Feiyan2, GAO Yuan2, YANG Zhou2, NIE Sheng2   

  1. 1. State Grid Economic and Technological Research Institute Co., LTD, 102209, China;
    2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2025-09-02 Revised:2025-12-29 Published:2025-12-31
  • Supported by:
    ; This work was supported by the Technical Foundation of State Grid Corporation of China under Grant (52230025000F-191-ZN).

摘要: 针对当前电力场景点云分割模型因噪声干扰强、线状结构识别难、类别不平衡等因素,导致分割性能不稳定的问题。本文提出一种面向电力场景的鲁棒性点云语义分割方法,结合KNN噪声抑制、椭球结构感知卷积与Focal Loss损失函数三大模块,有效提升了模型的抗干扰性、结构识别完整性和对少数类的判别能力。在高压输电走廊实测数据集(500 kV)和ECLAIR公开数据集上开展对比实验,结果显示本文方法在总体准确率(OA)和平均交并比(mIoU)方面均优于主流方法KPConv与RandLA-Net,其中针对500 kV 数据集,新提出算法的mIoU较RandLA-Net算法提升9.5%,较KPConv算法提升5.9%,显著提升了线状部件与小类别目标的识别效果,展现出良好的准确性、稳定性与泛化能力。

关键词: 电力场景, 语义分割, 鲁棒性, 机载激光点云, 类别不平衡

Abstract: Semantic segmentation of point clouds in transmission corridor remains a challenging task due to strong noise interference, the difficulty of accurately identifying linear structures, and severe class imbalance, all of which result in unstable segmentation performance. To address these issues, this paper proposes a robust semantic segmentation method for transmission corridor point clouds. The proposed approach integrates three key modules: k-nearest neighbor (KNN)-based noise suppression, ellipsoidal structure-aware convolution, and the Focal Loss function. These modules collaboratively enhance the model's robustness to noise, structural completeness in feature representation, and discrimination capability for minority classes. Extensive experiments were conducted on a real-world 500 kV high-voltage transmission corridor dataset and the publicly available ECLAIR dataset. Experimental results demonstrate that the proposed method achieves superior performance compared to state-of-the-art approaches such as KPConv and RandLA-Net in terms of overall accuracy (OA) and mean intersection over union (mIoU). Specifically, on the 500 kV dataset, the proposed method improves the mIoU by 9.5% over RandLA-Net and by 5.9% over KPConv. The method significantly enhances the recognition of linear components and small-category objects, exhibiting excellent accuracy, stability, and generalization capability. This work was supported by the Technical Foundation of State Grid Corporation of China under Grant (52230025000F-191-ZN).

Key words: transmission corridor, semantic segmentation, robustness, airborne lidar point cloud, class imbalance

中图分类号: