欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2014, Vol. 31 ›› Issue (2): 145-154.DOI: 10.7523/jssn.2095-6134.2014.02.001

• 数学与物理学 •    下一篇

上临界渗流转角问题研究

孔瑞远, 郭田德   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2012-12-04 修回日期:2013-04-24 发布日期:2014-03-15
  • 通讯作者: 孔瑞远,E-mail:biaojin@ucas.ac.cn
  • 基金资助:

    Supported by National Natural Science Foundation of China(71271204,11331012,and 11101420)

A note on winding angles for supercritical percolation

KONG Ruiyuan, GUO Tiande   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-12-04 Revised:2013-04-24 Published:2014-03-15
  • Supported by:

    Supported by National Natural Science Foundation of China(71271204,11331012,and 11101420)

摘要:

研究二维上临界边渗流,主要关注开路旋转角度的一些性质. 假设从原点到边长为n的盒子边界存在一条开路,在此条件下,证明这些路的旋转角度的最大值满足大数律. 此外,还证明对于任意δ>0,当n充分大时,大概率地有相邻左右贯穿开路的2个相邻接触点的距离小于log1+δn.

关键词: 转角, 贯穿路, 大数律, 接触点

Abstract:

This paper studies the supercritical Bernoulli bond percolation in two dimensions, focusing on properties of the winding angles of open paths. Under the condition that there exists an open path from the origin to the boundary of box B(n), we prove that a law of large numbers holds for the maximum of such paths' winding angles. Moreover, we show that for any δ>0, there is a high probability that the distance between two adjacent contact points in two neighboring "innermost" left-right crossings is less than log1+δn for sufficiently large n.

Key words: winding angle, crossing, law of large numbers, contact point

中图分类号: