欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2014, Vol. 31 ›› Issue (2): 257-266.DOI: 10.7523/jssn.2095-6134.2014.02.017

• 计算机科学 • 上一篇    下一篇

融合奇异值分解和动态转移链的学术资源推荐模型

罗铁坚, 程福兴, 周佳   

  1. 中国科学院大学信息科学与工程学院, 北京 100049
  • 收稿日期:2013-03-29 修回日期:2013-07-01 发布日期:2014-03-15
  • 通讯作者: 周佳,E-mail:jiavaz@163.com
  • 基金资助:

    Supported by National Natural Science Foundation of China(61103131/F020511)

A novel academic recommendation model with singular value decomposition and dynamic transfer chain

LUO Tiejian, CHENG Fuxing, ZHOU Jia   

  1. School of Information and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-03-29 Revised:2013-07-01 Published:2014-03-15
  • Supported by:

    Supported by National Natural Science Foundation of China(61103131/F020511)

摘要:

学术资源推荐领域学习者兴趣和学术趋势随时间的变化影响学术资源推荐系统的准确性. 现有大部分推荐方法都没有考虑时间因素. 本文用动态转移链(DTC)对用户兴趣和学术趋势的时效性进行建模. 在DTC框架的基础上,提出一种新的融合矩阵奇异值分解模型(SVD)和动态转移链的学术资源推荐算法(SVD&DTC). 在数据集SeekSearch上对该方法进行实验,结果表明该算法较之当前流行的主要算法准确率提升3.89%.

关键词: 学术资源推荐, 动态转移链, 奇异值分解, 时效性推荐

Abstract:

In the field of academic recommendation, changes in learner's preferences and academic trends with time affect the accuracy of academic recommendation systems. Most of the existing recommendation methods do not consider the time factor. We propose the dynamic transfer chain (DTC) to model users' preferences and academic trends over time. Based on DTC framework, we present a novel temporal academic recommendation algorithm (SVD&DTC) which combines singular value decomposition (SVD) and DTC together. Finally, we evaluate the effectiveness of the method using datasets on SeekSearch, and the results show a 3.89% improvement over the previous start-of-the-art.

Key words: academic recommendation, dynamic transfer chain (DTC), singular value decomposition (SVD), temporal recommendation

中图分类号: