欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2008, Vol. 25 ›› Issue (4): 452-459.DOI: 10.7523/j.issn.2095-6134.2008.4.004

• 论文 • 上一篇    下一篇

S2CPn 的共形极小浸入

陈红霞 焦晓祥   

  1. 中国科学院研究生院数学科学学院,北京100049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2008-07-15

Conformal minimal immersions of S2 in CPn

Chen hong-xia, Jiao xiao-xiang   

  1. Department of Mathematics, Graduate University, Chinese Academy of Sciences, Beijing 100049, China

  • Received:1900-01-01 Revised:1900-01-01 Published:2008-07-15

摘要: 通过李群、活动标架,以及调和映射来研究从S2CPn的共形极小浸入.首先,用一种新方法证明Bolton的一个定理,从S2到的全纯曲线在差一个刚动的情况下由度量唯一决定;其次,利用从 S2CPn的共形极小浸入来构造从S2G2,n+1的共形极小浸入;最后,如果φ 是从S2CPn 的全实共形极小浸入,且φ 是常曲率的,则可以找出具体的等距变换,使得gφ 包含在RPnCPn中.

关键词: 全纯曲线, 极小浸入, 调和映射, Gauss曲率

Abstract: In this paper, conformal minimal 2-sphere immersed in a complex projective space are studied by applying Lie theory, moving frame and harmonic sequence. First, we use a different way from Bolton to prove that a holomorphic curve from S2 into CPn is uniquely determined by its induced metric, up to a rigid motion. Secondly, via conformal minimal immersions of constant curvature from S2 into CPn, we can construct new minimal immersions of S2 in G2,n+1 with constant curvature. Finally, if φ is a totally real conformal minimal 2-sphere of constant curvature immersed in a complex projective space, then we can find the explicit isometry transform such that gφ lies in RPn CPn.

Key words: holomorphic curve, minimal immersion, harmonic sequence, Gauss curvature