欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2009, Vol. 26 ›› Issue (1): 132-140.DOI: 10.7523/j.issn.2095-6134.2009.1.020

• 简报 • 上一篇    下一篇

粘塑性随机有限元及其对堤坝填筑问题的分析

王亚军,张我华   

  1. 浙江大学软弱土与环境土工教育部重点实验室,杭州310027
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2009-01-15

Viscous-plastic medium stochastic finite element method studies and application on levee reclamation work

WANG Ya-Jun, ZHANG Wo-Hua   

  1. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education (Zhejiang University)
    Hangzhou 310027, China
  • Received:1900-01-01 Revised:1900-01-01 Published:2009-01-15

摘要: 基于Mohr-Coulomb破坏准则下材料的非线性特征,结合粘塑性应力空间内破坏准则被有限超越期间的稳定时间步长,对随机数学覆盖下粘塑性数值算法的逻辑实现过程进行推导,在直接偏微分理论基础上建立了三维及平面应变条件下粘塑性非线性随机有限元的本构关系式,进而提出了基于全量理论的粘塑性非线性随机有限元列式,并以堤防填筑工程为例,分析研究了土质堤坝分阶段逐步填筑过程中的随机演化机理及堤坝结构的可靠度安全性,实现了堤防填筑工程的全程随机模拟。

关键词: Mohr-Coulomb破坏准则, 粘性伪时间步, 粘塑性非线性, 堤防可靠度, 粘塑性非线性随机有限元

Abstract: The logical deduction on viscous-plastic numerical algorithm, in this paper, is translated under stochastic mathematical coverage coupled with stable time step by which the transcendental period of failure criterion evolution is measured in viscous-plastic stress space, by which, the nonlinear characteristics of geo-material is described deeply under Mohr-Coulomb failure criterion. Furthermore, constitution model of viscous-plastic nonlinear stochastic finite element method on 3-dimention and plane strain status is setup here on the basis of Partial Differentiation Method. Thereby, the numerical algorithm formulation on viscous-plastic nonlinear stochastic finite element method is introduced based on total strain theory. Levee structure construction as an objective case is simulated during whole applying course under the foregoing stochastic mathematical coverage, by which, the corresponding random evolution mechanism and reliability on dike structure reclamation working phase is studied comprehensively.

Key words: Mohr-Coulomb failure criterion, viscous dummy step, viscous-plastic non-linear, dike structure reliability, viscous-plastic non-linear stochastic finite element method