欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2010, Vol. 27 ›› Issue (1): 49-54.DOI: 10.7523/j.issn.2095-6134.2010.1.007

• 论文 • 上一篇    下一篇

基于小波包与自适应预测器的音频隐写分析方法

王昱洁, 郭立, 王翠平, 丁治国   

  1. 中国科学技术大学电子科学与技术系,合肥 230027
  • 收稿日期:2009-06-15 修回日期:2009-09-08 发布日期:2010-01-15
  • 通讯作者: 郭立
  • 基金资助:

    国家自然科学基金项目(60772032)资助 

Audio steganalysis method based on wavelet packet and adaptive predictor

WANG Yu-Jie, GUO Li, WANG Cui-Ping, DING Zhi-Guo   

  1. Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
  • Received:2009-06-15 Revised:2009-09-08 Published:2010-01-15

摘要:

提出一种基于小波包与自适应预测器的音频隐写分析方法,主要用于检测加性噪声模型.利用加性噪声对音频高频部分比低频部分影响显著的特点,对音频信号进行小波包分解;然后利用最小均方(LMS)自适应预测器对高频小波包系数进行预测,选取预测误差的统计量作为统计特征;最后采用支持向量机分类.实验证明,对于常用的加性噪声隐写方法,即使在嵌入强度或嵌入率较低的情况下,也能达到较高的分类准确率.

关键词: 加性噪声模型, 音频隐写分析, 小波包分解, 自适应预测, 支持向量机

Abstract:

An audio steganalysis method based on wavelet packet and adaptive predictor is proposed. In this scheme, audio signals are firstly decomposed by the wavelet packet, the wavelet packet coefficients of high frequency are then predicted by the LMS adaptive predictor, statistics of predicted errors are selected as the statistical features, and finally SVM is implemented as a classifier. The experimental results verify that, for the commonly used steganography methods of additive noise, high classification accuracy can be achieved even in the case of low embedding strength or low embedding rate.

Key words: additive noise model, audio steganalysis, wavelet packet decomposition, adaptive predictor, support vector machine

中图分类号: