欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2013, Vol. 30 ›› Issue (5): 591-597.DOI: 10.7523/j.issn.2095-6134.2013.05.003

• 数学 • 上一篇    下一篇

上三角算子矩阵Weyl型定理的稳定性判定

殷俊强, 曹小红   

  1. 陕西师范大学数学与信息科学学院, 西安 710062
  • 收稿日期:2012-07-06 修回日期:2012-10-31 发布日期:2013-09-15
  • 基金资助:

    陕西师范大学中央高校基本科研业务费专项资金(GK200901015)资助 

Judgement on stability of Weyl’s theorem for the upper triangular operator matrices

YIN Jun-Qiang, CAO Xiao-Hong   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
  • Received:2012-07-06 Revised:2012-10-31 Published:2013-09-15
  • Contact: 曹小红,E-mail:jqyinnormal@126.com

摘要:

称算子T满足a-Browder定理,若σa(T)\σea(T)???π00a(T),其中σa(T)σea(T)分别表示算子T的逼近点谱和本质逼近点谱,和π00a(T)={λ∈isoσa(T),0< dimN(T-λI)<∞}. 若σa(T)\σea(T)=π00a(T), 则称算子T 满足a-Weyl定理. 利用上三角算子矩阵中主对角线上的算子的半Fredholm域的特征, 研究上三角算子矩阵a-Browder定理和a-Weyl定理在紧摄动下的稳定性.

关键词: 上三角算子矩阵, a-Browder定理, 紧摄动, 渐近纠缠算子, 半Fredholm域

Abstract:

An operator T is said to satisfy a-Browder's theorem if σa(T)\σea(T)???π00a(T), where σa(T) and σea(T) denote the approximate point spectrum and the essential approximate point spectrum, respectively, and π00a(T)={λ∈isoσa(T),0< dimN(T-λI)<∞}. If σa(T)\σea(T)=π00a(T), we say that T satisfies a-Weyl's theorem. In this note, by using the characteristics of semi-Fredholm domain of the diagonal of the upper triangular operator matrix, we investigate the stability of a-Browder's theorem and a-Weyl's theorem for the upper triangular operator matrices under compact perturbations.

Key words: upper triangular operator matrices, a-Browder’s theorem, compact perturbations, asymptotic intertwining operator, semi-Fredholm domain

中图分类号: