欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2015, Vol. 32 ›› Issue (4): 441-445.DOI: 10.7523/j.issn.2095-6134.2015.04.003

• 数学与物理学 • 上一篇    下一篇

一个参量化Hilbert型积分不等式及其应用

刘琼   

  1. 邵阳学院理学与信息科学系, 湖南 邵阳 422000
  • 收稿日期:2014-11-28 修回日期:2015-01-21 发布日期:2015-07-15
  • 通讯作者: 刘琼
  • 基金资助:
    Supported by the National Natural Science Foundation of China (1117128) and Scientific Support Project of Hunan Education Department(10C1186)

On a parametric Hilbert-type integral inequality and its applications

LIU Qiong   

  1. Department of Science and Information, Shaoyang University, Shaoyang 422000, Hunan, China
  • Received:2014-11-28 Revised:2015-01-21 Published:2015-07-15
  • Supported by:
    Supported by the National Natural Science Foundation of China (1117128) and Scientific Support Project of Hunan Education Department(10C1186)

摘要: 通过引入多个参数,应用权函数方法、实分析技巧和拉普拉斯积分变换, 给出一个参量化Hilbert型积分不等式及其等价式, 证明它们的常数因子是最佳的. 作为应用, 通过选取一些特殊参数值, 获得了一些有意义的结果.

关键词: Hilbert型积分不等式, 权函数, 拉普拉斯积分变换, 最佳常数因子

Abstract: By introducing some parameters and by using the way of weight function and the techniques of real analysis and Laplace's integral transform, a parametric Hilbert-type integral inequality and its equivalent form are given, and their constant factors are proved to be the best values. As applications, some meaningful results are obtained by selecting the special values for the parameters.

Key words: Hilbert-type integral inequality, weight function, Laplace's integral transform, the best constant factor

中图分类号: