欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2015, Vol. 32 ›› Issue (6): 790-796.DOI: 10.7523/j.issn.2095-6134.2015.06.010

• 信息与电子科学 • 上一篇    下一篇

基于压缩感知的SAR图像压缩算法

许学杰1,2, 潘志刚1, 刘畅1   

  1. 1. 中国科学院电子学研究所, 北京 100190;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2014-10-08 修回日期:2015-05-18 发布日期:2015-11-15
  • 通讯作者: 许学杰
  • 基金资助:

    国家自然科学基金(61101201)资助

SAR image compression algorithm based on compressed sensing

XU Xuejie1,2, PAN Zhigang1, LIU Chang1   

  1. 1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-10-08 Revised:2015-05-18 Published:2015-11-15

摘要:

研究基于压缩感知的合成孔径雷达(SAR)图像压缩算法.根据压缩感知理论,在信号降维方面,提出一种更优化的观测矩阵构造方法;在信号重构方面,提出一种基于微分熵和迭代加权最小二乘的改进重构算法.通过对SAR图像进行压缩和性能比较,得出结论:本文提出的改进算法优于传统的压缩感知算法.

关键词: 压缩感知, SAR图像压缩, 微分熵, 迭代加权最小二乘

Abstract:

In this work, SAR image compression algorithm based on compressed sensing is studied. Based on the theory of compressed sensing, a new approach for measurement matrix construction is proposed in dimension reduction domain while a new algorithm named improved iteratively reweighted least squares based on differential entropy for signal reconstruction is put forward as well. The conclusion can be drawn that the new compression algorithm is prior to traditional compression algorithms after the SAR image compression experiment and the compression performance comparison.

Key words: compressed sensing, SAR image comprssion, differential entropy, iteratively reweighted least squares

中图分类号: