[1] Friedlander S K. Smoke, dust, and haze:fundamentals of aerosol dynamics[M].New York:Oxford University Press, 2000.
[2] Hofmann S, Raisch J. Solutions to inversion problems in preferential crystallization of enantiomers. Part Ⅱ:Batch crystallization in two coupled vessels[J]. Chemical Engineering Science, 2013, 88:48-68.
[3] Hosseini A, Bouaswaig A E, Engell S. Novel approaches to improve the particle size distribution prediction of a classical emulsion polymerization model[J]. Chemical Engineering Science, 2013, 88:108-120.
[4] Riemer N, West M, Zaveri R, et al. Estimating black carbon aging time-scales with a particle-resolved aerosol model[J]. Journal of Aerosol Science, 2010, 41(1):143-158.
[5] Fox R O. Higher-order quadrature-based moment methods for kinetic equations[J]. Journal of Computational Physics, 2009, 228(20):7771-7791.
[6] Barrasso D, Ramachandran R. A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes[J]. Chemical Engineering Science, 2012, 80:380-392.
[7] Chauhan S S, Chakraborty J, Kumar S. On the solution and applicability of bivariate population balance equations for mixing in particle phase[J]. Chemical Engineering Science, 2010, 65(13):3914-3927.
[8] Lushnikov A. Evolution of coagulating systems:Ⅲ. Coagulating mixtures[J]. Journal of Colloid and Interface Science, 1976, 54(1):94-101.
[9] Matsoukas T, Kim T, Lee K. Bicomponent aggregation with composition-dependent rates and the approach to well-mixed state[J]. Chemical Engineering Science, 2009, 64(4):787-799.
[10] Matsoukas T, Lee K, Kim T. Mixing of components in two-component aggregation[J]. AIChE journal, 2006, 52(9):3088-3099.
[11] Lee K, Kim T, Rajniak P, et al. Compositional distributions in multicomponent aggregation[J]. Chemical Engineering Science, 2008, 63(5):1293-1303.
[12] Zhao H, Kruis F E, Zheng C. Monte Carlo simulation for aggregative mixing of nanoparticles in two-component systems[J]. Industrial & engineering chemistry research, 2011, 50(18):10652-10664.
[13] Marshall C L, Rajniak P, Matsoukas T. Numerical simulations of two-component granulation:comparison of three methods[J]. Chemical Engineering Research and Design, 2011, 89(5):545-552.
[14] Zhao H, Kruis F E. Dependence of steady-state compositional mixing degree on feeding conditions in two-component aggregation[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):6047-6055.
[15] Zhao H, Kruis F E, Zheng C. A differentially weighted Monte Carlo method for two-component coagulation[J]. Journal of Computational Physics, 2010, 229(19):6931-6945.
[16] Zhao H, Kruis F E, Zheng C. Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation[J]. Aerosol Science and Technology, 2009, 43(8):781-793.
[17] Zhao H, Zheng C. A new event-driven constant-volume method for solution of the time evolution of particle size distribution[J]. Journal of Computational Physics, 2009, 228(5):1412-1428.
[18] Zhao H, Zheng C. Two-component Brownian coagulation:Monte Carlo simulation and process characterization[J]. Particuology, 2011, 9(4):414-423.
[19] Zhao H, Zheng C. A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems[J]. Computers & Fluids, 2013, 71:196-207.
[20] Hao X, Zhao H, Xu Z, et al. Population balance-Monte Carlo simulation for gas-to-particle synthesis of nanoparticles[J]. Aerosol science and technology, 2013, 47(10):1125-1133.
[21] Xu Z, Zhao H, Zheng C. Fast Monte Carlo simulation for particle coagulation in population balance[J]. Journal of Aerosol Science, 2014, 74:11-25. |