[1] Zhao Z, Chen S, Chan C Y, et al. A facile and versatile approach to efficient luminescent materials for applications in organic light-emitting diodes[J]. Chem Asian J, 2012, 7(3):484-488.
[2] Shan X C, Zhang H B, Chen L, et al. Multistimuli-responsive luminescent material reversible switching colors via temperature and mechanical force[J]. Cryst Growth Des, 2013, 13(4):1 377-1 381.
[3] Kim T I, Jin H, Bae J, et al. Excimer emission-based fluorescent probe targeting caspase-3[J]. Anal Chem, 2017, 89(19):10 565-10 569.
[4] Liu J, Ren J, Bao X J, et al. pH-Switchable fluorescent probe for spatially-confined visualization of intracellular hydrogen peroxide[J]. Anal Chem, 2016, 88(11):5 865-5 870.
[5] Deng H P, Su Y, Hu M, et al. Multicolor fluorescent polymers inspired from green fluorescent protein[J]. Macromolecules, 2015, 48(16):5 969-5 979.
[6] Ma X F, Sun R, Cheng J Y, et al. Fluorescence aggregation-caused quenching versus aggregation-induced emission:a visual teaching technology for undergraduate chemistry students[J]. J Chem Educ, 2015, 93(2):345-350.
[7] Luo J D, Qiu C S, Kwok H, et al. Aggregation induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem Commun, 2001, 381(18):1 740-1 741.
[8] Chen J W, Charles C W, Jacky W Y, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles[J]. Chem Mater, 2003, 15(7):1 535-1 546.
[9] 张双,秦安军,孙景志,等. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4):621-636.
[10] Fan X, Sun J, Wang F, et al. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state[J]. Chem Commun, 2008, (26):2 989-2 991.
[11] Ren Y, Jacky W Y L, Dong Y Q, et al. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates[J]. J Phys Chem B, 2005, 109(3):1 135-1 140.
[12] Xie Z Q, Yang B, Xie W J, et al. A class of nonplanar conjugated compounds with aggregation-induced emission:structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds[J]. J Phys Chem B, 2006, 110(42):20 993-21 000.
[13] Zhang G, Lu J, Fraser C L. Mechanochromic lum-inescence quenching:force-enhanced singlet-to-triplet intersystem crossing for iodide-substituted difluoroboron-dibenzoylmethane-dodecane in the solid state[J]. Inorg Chem, 2010, 49(23):10 747-10 749.
[14] Braye E H, Hubel W, Caplier I. New unsaturated heterocyclic systems[J]. J Am Chem Soc, 1961, 83(21):4 406-4 413.
[15] Luo J, Song K, Gu F L, et al. Switching of non-helical overcrowded tetrabenzoheptafulvalene derivatives[J]. Chem Sci, 2011, 2(10):2 029-2 034.
[16] Becker H D, Sandros K, Skelton B W, et al. Relationship between fluorescence and molecular geometry. proximity effects in fluorescence quenching by the anthrone-anthracene interaction[J]. J Phys Chem B, 1981, 85(20):2 927-2 930.
[17] Nyakatura E K, Rezaei A R, Mortier J, et al. An unusual interstrand H-bond stabilizes the heteroassembly of helical alphabetagamma-chimeras with natural peptides[J]. ACS Chem Biol, 2014, 9(3):613-616.
[18] Montalvo G L, Zhang Y, Young T M, et al. De novo design of self-assembling foldamers that inhibit heparin-protein interactions[J]. ACS Chem Biol, 2014, 9(4):967-975.
[19] Qi T, Deschrijver T, Huc I. Large-scale and chromatography-free synthesis of an octameric quinoline-based aromatic amide helical foldamer[J]. Nat Protoc, 2013, 8(4):693-708.
[20] Chen Z, Urban N D, Gao Y, et al. Covalent reinforcement of hydrogen-bonded discs into stably folded helical structures[J]. Org Lett, 2011, 13(15):4 008-4 011.
[21] Dolain C, Jiang H, Leger J M, et al. Chiral induction in quinoline-derived oligoamide foldamers:assignment of helical handedness and role of steric effects[J]. J Am Chem Soc, 2005, 127(37):12 943-12 951.
[22] Jiang H, Leger J M, Dolain C, et al. Aromatic delta-peptides:design, synthesis and structural studies of helical, quinoline-derived oligoamide foldamers[J]. Tetrahedron, 2003, 59(42):8 365-8 374. |