欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (1): 130-136.DOI: 10.7523/j.issn.2095-6134.2021.01.016

• 计算机科学 • 上一篇    下一篇

FACR:一种快速且准确的车辆识别器

周龙1, 王伟强1, 吕科2   

  1. 1. 中国科学院大学计算机科学与技术学院, 北京 101408;
    2. 中国科学院大学工程科学学院, 北京 100049
  • 收稿日期:2019-05-05 修回日期:2019-05-20 发布日期:2021-03-05
  • 通讯作者: 王伟强
  • 基金资助:
    国家自然科学基金(61772495)资助

FACR: a fast and accurate car recognizer

ZHOU Long1, WANG Weiqiang1, Lü Ke2   

  1. 1. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-05-05 Revised:2019-05-20 Published:2021-03-05

摘要: 现存的细粒度车辆识别器在多个数据集上取得了良好的性能。但这些方法通常运行效率低;而且当图像中存在多辆车时,易受背景干扰,不能准确地定位注意力区域。提出一种快速且准确的车辆识别器FACR,与现存方法相比有如下3个特点:1)其注意力区域定位组件,对图像中背景车辆有很高的鲁棒性;2)网络结构相对简单,在保持准确度相当的情况下,计算效率更高;3)首次使用层次分类的方法对车辆进行细粒度分类,使得单一网络能同时用于识别汽车类型、生产商、汽车型号和生产年份。在Compcars和Stanford Cars标准数据集上进行实验。结果表明,与现存方法相比,FACR在计算效率和分类精度方面具有良好性能。

关键词: 细粒度识别, 车辆识别, 深度学习

Abstract: Most existing fine-grained car recognizers have achieved the good performances on various datasets. However, these recognizers usually work inefficiently, and attention regions cannot be accurately localized especially when multiple cars exist. In this work, we propose a fast and accurate car recognizer called FACR, and it has three advantages over the previous approaches as follows. 1) The attention region localization component proposed in this work has high robustness to the background noise in the image. 2) The network structure proposed in this work is relatively simple, and it has higher computational efficiency while maintaining near accuracy. 3) It is the first time to use the hierarchical classification to finely and accurately categorize cars, and to allow a single network to simultaneously recognize car types, manufacturers, car models, and years of manufacture. The experiments are carried out on standard datasets Compcars and Stanford Cars, and the results demonstrate that FACR achieves the competitive performance compared with the-state-of-art methods in terms of both computational efficiency and classification accuracy.

Key words: fine-grained recognition, car recognition, deep learning

中图分类号: