欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (3): 422-432.DOI: 10.7523/j.ucas.2021.0055

• 简报 • 上一篇    

WILS:面向学业预警的非均衡增量式学习方法

盛晓光1, 王颖1, 张迎伟1,2, 项若曦3, 付红萍4,5   

  1. 1. 中国科学院大学人工智能学院, 北京 100049;
    2. 中国科学院计算技术研究所, 北京 100190;
    3. 北京语言大学信息科学学院, 北京 100083;
    4. 北京林业大学信息学院, 北京 100083;
    5. 国家林业和草原局林业智能信息处理工程技术研究中心, 北京 100083
  • 收稿日期:2021-01-22 修回日期:2021-04-27 发布日期:2021-04-27
  • 通讯作者: 项若曦,E-mail:rxxiang@blcu.edu.cn
  • 基金资助:
    国家自然科学基金(61702038)和中国科学院大学管理支撑创新能力提升专项(E0E58914)资助

A weighted incremental learning scheme for effective academic warning

SHENG Xiaoguang1, WANG Ying1, ZHANG Yingwei1,2, XIANG Ruoxi3, FU Hongping4,5   

  1. 1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    3. School of Information Science, Beijing Language and Culture University, Beijing 100083, China;
    4. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China;
    5. Engineering Research Center for Forestry-oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
  • Received:2021-01-22 Revised:2021-04-27 Published:2021-04-27

摘要: 学业预警是构建完善教育管理体系的基础,有助于及早发现、干预学生学习和生活中的异常状况。然而实际研究仍面临诸多挑战,如:1)学生学业表现的相关影响因素往往不断变化,导致数据分布的变化;2)学业预警数据集一般存在类别不均衡的问题。针对上述挑战,提出一种面向学业预警的非均衡增量式学习方法(WILS)。WILS由增量学习机制和加权损失函数两部分构成,增量学习机制能够适应数据分布和样本特征的动态变化,加权损失函数通过为少数类赋予更高的权重提升对该类别的关注度。为评估WILS的效果,在包含2 275名本科生的真实数据集和包含1 000名学生的公开数据集上进行了实验验证。结果表明,相较于已有方法,WILS能够较好地适应数据和特征的连续动态变化,取得优异的识别效果。

关键词: 学业预警, 增量学习, 非均衡, 深度学习, 加权损失函数

Abstract: Academic warning plays an essential role in delivering personalized intervention for the student early and constructing a sound educational management system. However, practical explorations are usually limited by two challenges:1) Many influenced factors (e.g., curriculum setting) vary from the time, causing the change of data distribution; 2) The abnormal samples are generally rare compared with normal samples, and the available dataset tends to be imbalanced. To handle the challenges above, this paper proposes a Weighted Incremental Learning Scheme, namely WILS, to realize the effective academic warning of undergraduates. WILS consists of two essential components:1) An incremental learning mechanism that supports the changes of data distribution and features setting; 2) A weighted loss function that will assign a higher weight to the abnormal category. To evaluate the effectiveness of WILS, we conduct experiments on real dataset with 2 275 undergraduates and public-available dataset with 1 000 students. Experimental results demonstrate that WILS is significantly more accurate and efficient compared with other methods.

Key words: academic warning, incremental learning, imbalance, deep learning, weighted loss function

中图分类号: