[1] Juran J M, Gryna F M, Bingham R S. Quality control handbook[M]. 3rd ed. New York: McGraw-Hill, 1974. [2] Kane V E. Process capability indices[J]. Journal of Quality Technology, 1986, 18(1):41-52. DOI:10.1080/00224065.1986.11978984. [3] Chan L K, Cheng S W, Spiring F A. A new measure of process capability: Cpm[J]. Journal of Quality Technology, 1988, 20(3):162-175. DOI:10.1080/00224065.1988.11979102. [4] Pearn W L, Kotz S, Johnson N L. Distributional and inferential properties of process capability indices[J]. Journal of Quality Technology, 1992, 24(4):216-231. DOI: 10.1080/00224065.1992.11979403. [5] V? nnman K. A unified approach to capability indices[J]. Statistica Sinica, 1995, 5(2):805-820. [6] Chen K S, Pearn W L. An application of non-normal process capability indices[J]. Quality and Reliability Engineering International, 1997, 13(6):355-360. DOI: 10.1002/(sici)1099-1638(199711/12)13:6<355:aid-qre125>3.0.co;2-v. [7] Franklin L A, Wasserman G S. A note on the conservative nature of the tables of lower confidence limits for Cpk with a suggested correction[J]. Communications in Statistics-Simulation and Computation, 1992, 21(4):1165-1169. DOI: 10.1080/03610919208813070. [8] Tong L I, Chen J P. Lower confidence limits of process capability indices for non-normal process distributions[J]. International Journal of Quality & Reliability Management, 1998, 15(8/9): 907-919. DOI: 10.1108/02656719810199006. [9] Tong L I, Chen J P. Bootstrap confidence interval of the difference between two process capability indices[J]. The International Journal of Advanced Manufacturing Technology, 2003, 21(4):249-256. DOI: 10.1007/s001700300029. [10] Panichkitkosolkul W. Bootstrap confidence intervals of the difference between two process capability indices for half logistic distribution[J]. Pakistan Journal of Statistics and Operation Research, 2012, 8(4):878. DOI:10.18187/pjsor.v8i4.455. [11] Rao G S, Aslam M, Kantam R R L. Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions[J]. Journal of Statistical Computation and Simulation, 2016, 86(5):862-873. DOI:10.1080/00949655.2015.1040799. [12] 颜斌, 王斌会, 徐锋. 过程能力指数样本估计及置信区间构建方法[J]. 统计与决策, 2020, 36(10):37-41. DOI:10.13546/j.cnki.tjyjc.2020.10.007. [13] 徐锋, 王斌会, 颜斌. 面向未知自相关过程能力指数的Bootstrap区间估计[J]. 统计与决策, 2022, 38(5):17-22. DOI: 10.13546/j.cnki.tjyjc.2022.05.003. [14] Tsui K W, Weerahandi S. Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters[J]. Journal of the American Statistical Association, 1989, 84(406):602-607. DOI: 10.1080/01621459.1989.10478810. [15] Weerahandi S. Generalized confidence intervals[J]. Journal of the American Statistical Association, 1993, 88(423):899-905. DOI: 10.1080/01621459.1993.10476355. [16] Mathew T, Sebastian G, Kurian K M. Generalized confidence intervals for process capability indices[J]. Quality and Reliability Engineering International, 2007, 23(4):471-481. DOI:10.1002/qre.828. [17] Kurian K M, Mathew T, Sebastian G. Generalized confidence intervals for process capability indices in the one-way random model[J]. Metrika, 2008, 67(1):83-92. DOI:10.1007/s00184-006-0123-2. [18] Ye R D, Ma T F, Wang S G. Generalized confidence intervals for the process capability indices in general random effect model with balanced data[J]. Statistical Papers, 2011, 52(1):153-169. DOI:10.1007/s00362-009-0216-x. [19] Kanichukattu J K, Luke J A. Comparison between two process capability indices using generalized confidence intervals[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9):2793-2798. DOI:10.1007/s00170-013-5244-y. [20] Yao C, Jun Y. Generalized confidence intervals for process capability indices of log-normal distribution in the one-way random model[C]//2016 Prognostics and System Health Management Conference (PHM-Chengdu). Chengdu, China. IEEE, 2016:1-5. DOI:10.1109/PHM.2016.7819855. [21] 贺加贝, 李新民.不平衡单因素随机效应模型下过程无能力指数的区间估计[J]. 系统科学与数学, 2020, 40(2):281-288. DOI:10.12341/jssms13815. [22] Mukherjee S P, Saran L K. Bivariate inverse Rayleigh distribution in reliability studies[J]. Journal of the Indian Statistical Association, 1984, 22:23-31. [23] Kantam R R L, Srinivasa Rao G, Sriram B. An economic reliability test plan: log-logistic distribution [J]. Journal of Applied Statistics, 2006, 33(3):291-296. DOI:10.1080/02664760500445681. [24] O’Quigley J, Struthers L. Survival models based upon the logistic and log-logistic distributions[J]. Computer Programs in Biomedicine, 1982, 15(1):3-11. DOI:10.1016/0010-468X(82)90051-4. [25] Kantam R R L, Rosaiah K, Rao G S. Acceptance sampling based on life tests: log-logistic model[J]. Journal of Applied Statistics, 2001, 28(1):121-128. DOI:10.1080/02664760120011644. [26] Rosaiah K, Kantam R R L. Acceptance sampling based on the inverse Rayleigh distribution[J]. Economic Quality Control, 2005, 20(2): 277-286. DOI:10.1515/eqc.2005.277. [27] Rao G S, Kantam R R L. Acceptance sampling plans from truncated life tests based on the log-logistic distributions for percentiles[J]. Economic Quality Control, 2010, 25(2):153-167. DOI:10.1515/eqc.2010.008. [28] Rao G S, Kantham R R L, Rosaiah K, et al. Acceptance sampling plans for percentiles based on the inverse Rayleigh distribution[J]. Electronic Journal of Applied Statistical Analysis, 2012, 5(3):164-177. DOI:10.1285/I20705948V5N2P164. [29] Srinivasa Rao G, Rosaiah K, Prasad S V S V S V. New acceptance sampling plans based on percentiles for type-II generalized log-logistic distribution[J]. American Journal of Applied Mathematics and Statistics, 2019, 7(4):131-137. DOI:10.12691/ajams-7-4-2. [30] Weerahandi S. Exact statistical methods for data analysis[M]. New York, NY: Springer New York, 1995. DOI:10.1007/978-1-4612-0825-9. [31] Maleki Jebely F, Zare K, Deiri E. Efficient estimation of the PDF and the CDF of the inverse Rayleigh distribution[J]. Journal of Statistical Computation and Simulation, 2018, 88(1):75-88. DOI:10.1080/00949655.2017.1378656. [32] 龙兵, 张忠占. 左删失恒定应力部分加速寿命试验下逆Rayleigh分布的参数估计[J]. 浙江大学学报(理学版), 2020, 47(3):315-321. DOI:10.3785/j.issn.1008-9497.2020.03.008. [33] 陈蒙, 陈望学, 邓翠红, 等. 排序集抽样下inverse Rayleigh分布的Fisher信息量及其在参数估计中的应用[J]. 系统科学与数学, 2022, 42(1):141-152. DOI:10.12341/jssms21498. [34] Verhulst P F. Notice sur la loi que la population suit dans son accroissement[J]. Correspondance Mathematique et Physique Publiee par A, 1838, 10:113-121. [35] He X F, Chen W X, Yang R. Log-logistic parameters estimation using moving extremes ranked set sampling design[J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36(1):99-113. DOI:10.1007/s11766-021-3720-y. [36] Hassan S S, Doori E A A. Estimating the survival and risk functions of a log-logistic distribution by using order statistics with practical application[J]. International Journal of Nonlinear Analysis and Applications, 2022, 13(1):2483-2502. DOI:10.22075/ijnaa.2022.5947. [37] Ibrahim A, Kalaf B A. Estimation of the survival function based on the log-logistic distribution[J]. International Journal of Nonlinear Analysis and Applications, 2022, 13(1):127-141. DOI:10.22075/ijnaa.2022.5466. [38] Mu W Y, Xiong S F. Robust generalized confidence intervals[J]. Communications in Statistics-Simulation and Computation, 2017, 46(8):6049-6060. DOI:10.1080/03610918.2016.1189566. [39] Zimmer W J, Keats J B, Wang F K. The burr XII distribution in reliability analysis[J]. Journal of Quality Technology, 1998, 30(4):386-394. DOI:10.1080/00224065.1998. 11979874. |