[1] Ahi Y, Coşkun Dilcan Ç, Köksal D D, et al. Reservoir evaporation forecasting based on climate change scenarios using artificial neural network model[J]. Water Resources Management, 2023, 37(6/7): 2607-2624. DOI: 10.1007/s11269-022-03365-0. [2] Zhan S G, Song C Q, Wang J D, et al. A global assessment of terrestrial evapotranspiration increase due to surface water area change[J]. Earth’s Future, 2019, 7(3): 266-282. DOI: 10.1029/2018ef001066. [3] Tao S L, Fang J Y, Zhao X, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2281-2286. DOI: 10.1073/pnas.1411748112. [4] Kayitesi N M, Guzha A C, Mariethoz G. Impacts of land use land cover change and climate change on river hydro-morphology-a review of research studies in tropical regions[J]. Journal of Hydrology, 2022, 615: 128702. DOI: 10.1016/j.jhydrol.2022.128702. [5] Pan X H, Wang W S, Liu T, et al. Integrated modeling to assess the impact of climate change on the groundwater and surface water in the South Aral Sea area[J]. Journal of Hydrology, 2022, 614: 128641. DOI: 10.1016/j.jhydrol.2022.128641. [6] Whitney K M, Vivoni E R, Bohn T J, et al. Spatial attribution of declining Colorado River streamflow under future warming[J]. Journal of Hydrology, 2023, 617: 129125. DOI: 10.1016/j.jhydrol.2023.129125. [7] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422. DOI: 10.1038/nature20584. [8] Donchyts G, Baart F, Winsemius H, et al. Earth’s surface water change over the past 30 years[J]. Nature Climate Change, 2016, 6(9): 810-813. DOI: 10.1038/nclimate3111. [9] Pickens A H, Hansen M C, Hancher M, et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series[J]. Remote Sensing of Environment, 2020, 243: 111792. DOI: 10.1016/j.rse.2020.111792. [10] Zhou Y, Dong J W, Cui Y P, et al. Rapid surface water expansion due to increasing artificial reservoirs and aquaculture ponds in North China Plain[J]. Journal of Hydrology, 2022, 608: 127637. DOI: 10.1016/j.jhydrol.2022.127637. [11] Huang C, Chen Y, Zhang S Q, et al. Detecting, extracting, and monitoring surface water from space using optical sensors: a review[J]. Reviews of Geophysics, 2018, 56(2): 333-360. DOI: 10.1029/2018rg000598. [12] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. DOI: 10.1080/01431169608948714. [13] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595. DOI: 10.3321/j.issn: 1007-4619.2005.05.012. [14] 闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007, 22(6): 62-67. DOI: 10.3969/j.issn.1000-3177.2007.06.015. [15] 曹荣龙, 李存军, 刘良云, 等. 基于水体指数的密云水库面积提取及变化监测[J]. 测绘科学, 2008, 33(2): 158-160. DOI: 10.3771/j.issn.1009-2307.2008.02.054. [16] 丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2): 167-171. DOI: 10.1007/BF01990740. [17] 肖艳芳, 赵文吉, 朱琳. 利用TM影像Band1与Band7提取水体信息[J]. 测绘科学, 2010, 35(5): 226-227, 216. DOI: 10.16251/j.cnki.1009-2307.2010.05.083. [18] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35. DOI: 10.1016/j.rse.2013.08.029. [19] Fisher A, Flood N, Danaher T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175: 167-182. DOI: 10.1016/j.rse.2015.12.055. [20] Wang X B, Xie S P, Zhang X L, et al. A robust multi-band water index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 73-91. DOI: 10.1016/j.jag.2018.01.018. [21] 黄远林, 邓开元, 任超, 等. 一种新的水体指数及其稳定性研究[J]. 地球物理学进展, 2020, 35(3): 829-835. DOI:10.6038/pg2020DD0311. [22] 邱煌奥, 程朋根, 甘田红. 基于多光谱影像的水体自动提取方法比较研究[J]. 人民长江, 2017, 48(24): 111-116. DOI: 10.16232/j.cnki.1001-4179.2017.24.022. [23] 周晗, 叶虎平, 魏显虎, 等. 基于Sentinel-1/2的水体提取方法对比研究: 以斯里兰卡小型水体为例[J]. 中国科学院大学学报, 2019, 36(6): 794-802. DOI: 10.7523/j.issn.2095-6134.2019.06.010. [24] 王净, 李亚春, 景元书. 基于MODIS数据的水体识别指数方法的比较研究[J]. 气象科学, 2009, 29(3): 342-347. DOI: 10.3969/j.issn.1009-0827.2009.03.010. [25] 王一帆, 徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5): 1089-1098. DOI: 10.11873/j.issn.1004-0323.2020. 5.1089. [26] Xu Y W, Lu H. Comparison of water surface detection methods for inundation mapping from sentienl-2 and Landsat-8: Zhengzhou flood case[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. July 17-22, 2022, Kuala Lumpur, Malaysia. IEEE, 2022: 2331-2334. DOI: 10.1109/IGARSS46834.2022.9884774. [27] 刘浩, 周万蓬, 张宇佳, 等. 基于Landsat影像的1999—2019年鄱阳湖面积动态监测[J]. 东华理工大学学报(自然科学版), 2023, 46(1): 68-76. DOI: 10.3969/j.issn.1674-3504.2023.01.008. [28] Sekertekin A. A survey on global thresholding methods for mapping open water body using Sentinel-2 satellite imagery and normalized difference water index[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1335-1347. DOI: 10.1007/s11831-020-09416-2. [29] Mukherjee A, Kumar A A, Ramachandran P. Development of new index-based methodology for extraction of built-up area from Landsat7 imagery: comparison of performance with SVM, ANN, and existing indices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1592-1603. DOI: 10.1109/TGRS.2020.2996777. [30] Li C M, Shao Z F, Zhang L, et al. A comparative analysis of index-based methods for impervious surface mapping using multiseasonal Sentinel-2 satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3682-3694. DOI: 10.1109/JSTARS.2021.3067325. [31] 徐涵秋. 水体遥感指数研究进展[J]. 福州大学学报(自然科学版), 2021, 49(5): 613-625. DOI: 10.7631/issn.1000-2243.21286. [32] 李佳雨, 王华斌, 王光辉, 等. 基于指数构建的高分辨率城市水体提取新方法[J]. 遥感信息, 2018, 33(5): 99-105. DOI: 10.3969/j.issn.1000-3177.2018.05.016. [33] 张磊, 韩秀珍, 翁富忠, 等. 基于Sentinel-2A MSI数据的水体信息提取算法对比研究[J]. 激光与光电子学进展, 2022, 59(12): 505-515. [34] Zhang Y, Du J Q, Guo L, et al. Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020[J]. Science of the Total Environment, 2022, 845: 157152. DOI: 10.1016/j.scitotenv.2022.157152. [35] 希丽娜依·多来提, 阿里木江·卡斯木, 如克亚·热合曼, 等. 基于四种水体指数的艾比湖水面提取及时空变化分析[J]. 长江科学院院报, 2022, 39(10): 134-140. DOI: 10.11988/ckyyb.20210634. [36] Li J J, Meng Y Z, Li Y X, et al. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning[J]. Journal of Hydrology, 2022, 612: 128202. DOI: 10.1016/j.jhydrol.2022.128202. [37] 李文苹, 王旭红, 李天文, 等. 黄河流域内陆地表水体提取方法研究[J]. 水土保持通报, 2017, 37(2): 158-164. DOI: 10.13961/j.cnki.stbctb.2017.02.024. [38] Dong Y T, Fan L B, Zhao J, et al. Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing[J]. Journal of Hydrology, 2022, 614: 128580. DOI: 10.1016/j.jhydrol.2022. 128580. [39] 刘瑞, 朱道林. 基于转移矩阵的土地利用变化信息挖掘方法探讨[J]. 资源科学, 2010, 32(8): 1544-1550. [40] Vermote E, Justice C, Claverie M, et al. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product[J]. Remote Sensing of Environment, 2016, 185: 46-56. DOI: 10.1016/j.rse.2016.04.008. [41] 杨清可, 段学军, 王磊, 等. 基于“三生空间”的土地利用转型与生态环境效应: 以长江三角洲核心区为例[J]. 地理科学, 2018, 38(1): 97-106. DOI: 10.13249/j.cnki.sgs.2018.01.011. [42] 陈华芳, 王金亮, 陈忠, 等. 山地高原地区TM影像水体信息提取方法比较: 以香格里拉县部分地区为例[J]. 遥感技术与应用, 2004, 19(6): 479-484. DOI: 10.3969/j.issn.1004-0323.2004.06.009. [43] 刘桂林, 张落成, 刘剑, 等. 基于Landsat TM影像的水体信息提取[J]. 中国科学院大学学报, 2013, 30(5): 644-650. DOI: 10.7523/j.issn.2095-6134.2013.05.011. [44] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2): 147-161. DOI: 10.16511/j.cnki.qhdxxb.2019.22.038. [45] 罗华, 雷斌, 胡玉新. 一种机载InSAR水体阴影的提取和识别方法[J]. 遥感技术与应用, 2014, 29(2): 258-263. DOI: 10.11873/j.issn.1004-0323.2014.2.0258. [46] Zou Z H, Xiao X M, Dong J W, et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3810-3815. DOI: 10.1073/pnas.1719275115. [47] 栗玉鸿, 王家卓, 胡应均, 等. 城市明渠生态补水方法初探: 以石家庄海绵城市规划中水环境提升为例[J]. 给水排水, 2019, 55(2): 64-69. DOI: 10.13789/j.cnki.wwe1964.2019.02.012. [48] 张英骏. 水量平衡法演算白洋淀枯水期最低补水水位[J]. 水利科技与经济, 2013, 19(5): 9-10, 14. DOI: 10.3969/j.issn.1006-7175.2013.05.003. [49] 石浩洋. 大清河下游保障生态水量的多水源补水研究[D]. 湖北宜昌: 三峡大学, 2021. |