欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2025, Vol. 42 ›› Issue (3): 371-381.DOI: 10.7523/j.ucas.2023.069

• 电子信息与计算机科学 • 上一篇    

基于DTW-SACP-LSTM模型的个股新闻信息挖掘及价格预测

王子平, 金百锁   

  1. 中国科学技术大学管理学院, 合肥 230000
  • 收稿日期:2023-02-23 修回日期:2023-06-02 发布日期:2023-06-02
  • 通讯作者: 王子平,E-mail:wzp85@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(7201101228)资助

News information mining and price prediction of individual stock based on DTW-SACP-LSTM model

WANG Ziping, JIN Baisuo   

  1. School of Management, University of Science and Technology of China, Hefei 230000, China
  • Received:2023-02-23 Revised:2023-06-02 Published:2023-06-02

摘要: 针对股票市场变化快、关系复杂的情况,提出一种结合个股新闻的股票价格预测方法。首先通过动态时间规整算法找到与目标个股序列相似度最高的基准序列,然后通过平滑突变点模型提取新闻影响的长度和时间,转化为时间序列数据,通过统计模型将股票之间的关系引入到时间序列预测,考察新闻影响力与股票历史价格数据之间的关系,同时利用长短期记忆网络将新闻影响与个股数据结合起来进行价格预测。结果表明,新闻在科技类行业领域的股票板块影响力最为明显;相比于已有的股票预测方法,融合模型的预测性能有所提升,并且随时间增长预测精度下降幅度较小。融合模型可以更精确地描述股票价格的变化,在模拟投资策略的条件下取得了14.50%的平均收益。

关键词: 金融新闻, 股票预测, 动态时间规整(DTW), 平滑突变点(SACP), 长短期记忆网络(LSTM)

Abstract: Aiming at the rapid changes and complex relations in the stock market, this paper proposes a stock price prediction method based on individual stock news. First, through dynamic time warping algorithm,the benchmark sequence with the highest similarity to the target individual stock sequence is found, and then we can extract the length and time of news impact through smooth-and-abrupt change point model, which is converted into time series data. We introduce the relationship between stocks into time series forecasting through statistical models, examine the relationship between news influence and historical stock price data, and combine news influence with individual stock data for price forecasting by using long-and-short-term memory network. The results show that the stock sector’s influence of news in the technology sector is the most obvious. Compared to existing stock prediction methods, the prediction performance of the fusion model has been improved, and the prediction accuracy has decreased slightly over time. The fusion model can more accurately describe the changes in stock prices, achieving an average return of 14.50% under the conditions of simulating investment strategies.

Key words: financial news, stock forecast, dynamic time warping (DTW), smooth-and-abrupt change point (SACP), long-and-short-term memory network (LSTM)

中图分类号: