| [1] |
Pigot A L, Sheard C, Miller E T, et al. Macroevolutionary convergence connects morphological form to ecological function in birds[J]. Nature Ecology & Evolution, 2020, 4(2): 230-239. DOI: 10.1038/s41559-019-1070-4 .
|
| [2] |
Miles D B, Ricklefs R E. The correlation between ecology and morphology in deciduous forest passerine birds[J]. Ecology, 1984, 65(5): 1629-1640. DOI: 10.2307/1939141 .
|
| [3] |
Whelan C J, Wenny D G, Marquis R J. Ecosystem services provided by birds[J]. Annals of the New York Academy of Sciences, 2008, 1134: 25-60. DOI: 10.1196/annals.1439.003 .
|
| [4] |
Morrison M L. Bird populations as indicators of environmental change[M]// Current Ornithology. Boston, MA: Springer, 1986: 429-451.10.1007/978-1-4615-6784-4_10.
|
| [5] |
Tattersall G J, Arnaout B, Symonds M R E. The evolution of the avian bill as a thermoregulatory organ[J]. Biological Reviews of the Cambridge Philosophical Society, 2017, 92(3): 1630-1656. DOI: 10.1111/brv.12299 .
|
| [6] |
Tattersall G J, Andrade D V, Abe A S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator[J]. Science, 2009, 325(5939): 468-470. DOI: 10.1126/science.1175553 .
|
| [7] |
van de Ven T M F N, Martin R O, Vink T J F, et al. Regulation of heat exchange across the hornbill beak: functional similarities with toucans?[J]. PLoS One, 2016, 11(5): e0154768. DOI: 10.1371/journal.pone.0154768 .
|
| [8] |
Hughes A L. Evolution of bill size in relation to body size in toucans and hornbills (Aves: Piciformes And Bucerotiformes)[J]. Zoologia (Curitiba), 2014, 31(3): 256-263. DOI: 10.1590/s1984-46702014000300007 .
|
| [9] |
Friedman N R, Harmáčková L, Economo E P, et al. Smaller beaks for colder winters: thermoregulation drives beak size evolution in Australasian songbirds[J]. Evolution; International Journal of Organic Evolution, 2017, 71(8): 2120-2129. DOI: 10.1111/evo.13274 .
|
| [10] |
Genbrugge A, Adriaens D, De Kegel B, et al. Structural tissue organization in the beak of Java and Darwin’s finches[J]. Journal of Anatomy, 2012, 221(5): 383-393. DOI: 10.1111/j.1469-7580.2012.01561.x .
|
| [11] |
Greenberg R, Cadena V, Danner R M, et al. Heat loss may explain bill size differences between birds occupying different habitats[J]. PLoS One, 2012, 7(7): e40933. DOI: 10.1371/journal.pone.0040933 .
|
| [12] |
Symonds M R E, Tattersall G J. Geographical variation in bill size across bird species provides evidence for Allen’s rule[J]. The American Naturalist, 2010, 176(2): 188-197. DOI: 10.1086/653666 .
|
| [13] |
Seki Y, Schneider M S, Meyers M A. Structure and mechanical behavior of a toucan beak[J]. Acta Materialia, 2005, 53(20): 5281-5296. DOI: 10.1016/j.actamat.2005.04.048 .
|
| [14] |
Kotzen B. An investigation of shade under six different tree species of the Negev Desert towards their potential use for enhancing micro-climatic conditions in landscape architectural development[J]. Journal of Arid Environments, 2003, 55(2): 231-274. DOI: 10.1016/S0140-1963(03)00030-2 .
|
| [15] |
Rohsenow W M, Hartnett J P, Cho Y I. Handbook of heat transfer[M]. Array New York: McGraw-Hill, 1998.
|
| [16] |
Liu J, Liu H, Zhen Q, et al. Laminar natural convection heat transfer from a pair of attached horizontal cylinders set in a vertical array[J]. Applied Thermal Engineering, 2017, 115: 1004-1019. DOI: 10.1016/j.applthermaleng.2017.01.029 .
|
| [17] |
Liu J, Liu H, Zhen Q, et al. Numerical investigation of the laminar natural convection heat transfer from two horizontally attached horizontal cylinders[J]. International Journal of Heat and Mass Transfer, 2017, 104: 517-532. DOI: 10.1016/j.ijheatmasstransfer.2016.08.075 .
|
| [18] |
Wang D C, Shi H Y, Lian Z Y, et al. Numerical study of the laminar natural convection heat transfer from three attached horizontal isothermal cylinders[J]. Thermal Science, 2022, 26(6 Part A): 4797-4808. DOI: 10.2298/tsci211226158w .
|
| [19] |
Miaoulis I N, Heilman B D. Butterfly thin films serve as solar collectors[J]. Annals of the Entomological Society of America, 1998, 91(1): 122-127. DOI: 10.1093/aesa/91.1.122 .
|
| [20] |
Metwally S, Martínez Comesaña S, Zarzyka M, et al. Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair[J]. Acta Biomaterialia, 2019, 91: 270-283. DOI: 10.1016/j.actbio.2019.04.031 .
|
| [21] |
Morgan V T. The overall convective heat transfer from smooth circular cylinders[M]//Advances in Heat Transfer. Amsterdam: Elsevier, 1975: 199-264. DOI: 10.1016/s0065-2717(08)70075-3 .
|
| [22] |
Boetcher S K S. Natural convection from circular cylinders[M]. Cham: Springer International Publishing, 2014. DOI: 10.1007/978-3-319-08132-8 .
|
| [23] |
Midtgård U. The Rete tibiotarsale and arteriovenous association in the hind limb of birds: a comparative morphological study on counter-current heat exchange systems[J]. Acta Zoologica, 1981, 62(2): 67-87. DOI: 10.1111/j.1463-6395.1981.tb00617.x .
|
| [24] |
McQueen A, Barnaby R, Symonds M R E, et al. Birds are better at regulating heat loss through their legs than their bills: implications for body shape evolution in response to climate[J]. Biology Letters, 2023, 19(11): 20230373. DOI: 10.1098/rsbl.2023.0373 .
|