欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2008, Vol. 25 ›› Issue (3): 419-432.DOI: 10.7523/j.issn.2095-6134.2008.3.019

• 优秀博士论文 • 上一篇    

功能分子设计合成及原理性的分子尺寸器件研究

郭雪峰1,2, 张德清1, 朱道本1   

  1. 1 化学所分子科学中心, 北京100080 2 中国科学院研究生院, 北京 100049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2008-05-15

Minireview: Molecular Level Devices Based on Electroactive Tetrathiafulvalene and Photochromic Spiropyran

Guo Xue-feng1,2, Zhang De-qing1, Zhu Dao-ben1   

  1. 1 Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China; 2 Graduate School, Chinese Academy of Sciences, Beijing 100080, China
  • Received:1900-01-01 Revised:1900-01-01 Published:2008-05-15

摘要: 详细综述了一些用于制备分子尺寸器件的化学策略的设计、发展和演示。其设计思想是通过各式各样的光诱导的电子、能量、和质子转移机理,氧化还原反应,构象变化,以及超分子原理,分别将2个信息量丰富而结构又比较简单的四硫富瓦烯和光致变色的螺吡喃分子,与它们性质互补的不同组分集成在一起来构建功能分子器件,用于完成快速的数字处理和传输。首先凭借四硫富瓦烯丰富的电化学性质,大量的D-A-D超分子和环轴烃分子已经被设计并成功合成。时间分辨的吸收和荧光光谱研究表明,这些D-A-D超分子发生分子内的光诱导的电子转移反应的能力可以通过不同的桥联基团进行有效调控。STM研究则首次发现并开辟了环轴烃分子在纳米记录和高密度信息储存方面的应用研究。同时,也详细地描述了如何充分利用光致变色的螺吡喃分子独特的电子、能量、和质子转移能力去设计超分子组合,并通过光和适当的化学试剂来控制这些组合的吸收、荧光和导电性质的方法。根据这些组合的光谱和电化学行为,构建了一系列新型的分子开关、逻辑门和分子回路。最后,展示了用于设计合成新类型开环结构稳定的荧光螺吡喃分子的独特见解。

Abstract: This minireview details the design, development, and demonstration of chemical strategies that are used to create molecular level devices and implement digital processing and communication. The design principle here is to integrate two informationally rich but relatively simple nanobuilding blocks with their complements through photoinduced electron transfer, redox processes, conformational changes, photoinduced energy and proton transfer, and supramolecular events into functional molecular devices. Depending on the abundant electrochemical properties of TTF, lots of D-A-D supramolecules and [2]rotaxanes with the different linkages were synthesized for studying photoinduced transient electron transfer and nanorecording abilities. Also detailed below are the methods to take advantage of the distinct abilities of electron, energy, and proton transfer of photochromic spiropyran to design supramolecular ensembles and control their absorption, fluorescence, and conductive properties by light and chemical reagents. Based on the spectral and electrochemical behaviors of these ensembles, a whole bunch of novel molecular switches, logic gates, and molecular circuits were constructed. At last, we present an interesting insight into designing a new type of luminescent spiropyan molecules with stable merocyanine open form in solution as well as in the solid state.