欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2012, Vol. 29 ›› Issue (5): 707-713.DOI: 10.7523/j.issn.2095-6134.2012.5.019

• 简报 • 上一篇    下一篇

基于改进的遗传算法的后非线性盲源分离

桑睿, 吴杰, 许华, 郭强   

  1. 空军工程大学电讯工程学院, 西安 710077
  • 收稿日期:2011-05-05 修回日期:2011-08-04 发布日期:2012-09-15
  • 通讯作者: 桑睿
  • 基金资助:
    国防科技重点实验室基金(9140C0201010902)资助

Post-nonlinear mixtures BSS based on an improved genetic algorithm

SANG Rui, WU Jie, XU Hua, GUO Qiang   

  1. Telecommunication Engineering Institute, Air Force Engineering University, Xi'an 710077, China
  • Received:2011-05-05 Revised:2011-08-04 Published:2012-09-15

摘要: 针对后非线性盲源分离中非线性参数估计中存在的问题,提出一种基于改进的自适应遗传算法的后非线性盲源分离方法.该方法给出一种新的适应度函数,利用适应度函数值反馈调节交叉概率和变异概率的选取,并将优先进化策略和模拟退火机制引入遗传算法中,再通过线性分离算法得到分离矩阵.仿真验证表明,该方法较传统方法具有更快的收敛速度和较高的分离精度.

关键词: 遗传算法, 盲源分离, 后非线性混合, 模拟退火, 优先进化

Abstract: Considering the deficiency of nonlinear parameter estimation in post-nonlinear mixtures BSS, we propose a method based on an improved GA. First, the value of a new fitness function is used to reflect on the choice of crossover and mutation probabilities. PE and SA are incorporated in GA. Finally, the linear separation algorithm is applied to estimate the separation matrix. The results indicate that the new method has better performance than conventional algorithms.

Key words: genetic algorithm (GA), BSS, post-nonlinear mixtures, simulated nnealing (SA), priority evolution(PE)

中图分类号: