[1] Faller P, Hureau C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide[J]. Dalton Trans, 2009, 7: 1080-1094.[2] Mattson M P. Pathways towards and away from Alzheimers disease[J]. Nature, 2004, 430(7000): 631-639.[3] Selkoe D J. Cell biology of protein misfolding: the examples of Alzheimers and Parkinsons diseases[J]. Nat Cell Biol, 2004, 6(11): 1054-1061.[4] Haass C, Selkoe D J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimers amyloid β-peptide[J]. Nat Rev Mol Cell Biol, 2007, 8(2): 101-112.[5] Tanzi R E, Bertram L. Twenty years of the Alzheimers disease amyloid hypothesis: a genetic perspective[J]. Cell, 2005, 120(4): 545-555.[6] Roychaudhuri R, Yang M, Hoshi M M, et al. Amyloid β-protein assembly and Alzheimer disease[J]. J Biol Chem, 2009, 284(8): 4749-4753.[7] Chen T, Wang X, He Y, et al. Effects of cyclen and cyclam on zinc(II)- and copper(II)-induced amyloid β-peptide aggregation and neurotoxicity[J]. Inorg Chem, 2009, 48(13): 5801-5809.[8] Huang X, Atwood C S, Moir R D, et al. Zinc-induced Alzheimers Aβ1-40 aggregation is mediated by conformational factors[J]. J Biol Chem, 1997, 272(42): 26464-26470.[9] Sarell C J, Syme C D, Rigby S E, et al. Copper(II) binding to amyloid-β fibrils of Alzheimers disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Aβ oligomeric form[J]. Biochemistry, 2009, 48(20): 4388-4402.[10] Lovell M A, Robertson J D, Teesdale W J, et al. Copper, iron and zinc in Alzheimers disease senile plaques[J]. J Neurol Sci, 1998, 158(1): 47-52.[11] Sabella S, Quaglia M, Lanni C, et al. Capillary electrophoresis studies on the aggregation process of β-amyloid 1-42 and 1-40 peptides[J]. Electrophoresis, 2004, 25(18-19): 3186-3194.[12] Verpillot R, Esselmann H, Mohamadi M R, et al. Analysis of amyloid-β peptides in cerebrospinal fluid samples by capillary electrophoresis coupled with LIF detection[J]. Anal Chem, 2011, 83(5): 1696-1703.[13] Colombo R, Carotti A, Catto M, et al. CE can identify small molecules that selectively target soluble oligomers of amyloid β protein and display antifibrillogenic activity[J]. Electrophoresis, 2009, 30(8): 1418-1429.[14] Brambilla D, Verpillot R, Taverna M, et al. New method based on capillary electrophoresis with laser-induced fluorescence detetion(CE-LIF) to monitor interaction between nanoparticles and the amyloid-β peptide[J]. Anal Chem, 2010, 82(24): 10083-10089.[15] Kozin S A, Zirah S, Rebuffat S, et al. Zinc binding to Alzheimers Aβ(1-16) peptide results in stable soluble complex[J]. Biochem Biophys Res Commun, 2001, 285(4): 959-964.[16] Barnham K J, Cappai R, Beyreuther K, et al. Delineating common molecular mechanisms in Alzheimers and prion diseases[J]. Trends Biochem Sci, 2006, 31(8): 465-472.[17] Murakami K, Irie K, Ohigashi H, et al. Formation and stabilization model of the 42-mer Aβ radical: implications for the long-lasting oxidative stress in Alzheimers disease[J]. J Am Chem Soc, 2005, 127(43): 15168-15174.[18] Simth D G, Cappai R, Barnham K J. The redox chemistry of the Alzheimers disease amyloid β-peptide[J]. Biochim Biophys Acta, 2007, 1768(8): 1976-1990. |