欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (1): 109-114.DOI: 10.7523/j.issn.2095-6134.2019.01.015

• 信息与电子科学 • 上一篇    下一篇

WFST解码器词图生成算法中的非活跃节点检测与内存优化

丁佳伟1, 刘加1, 张卫强1, 冯运波2, 刘利军2, 于乐2   

  1. 1. 清华大学电子工程系, 北京 100084;
    2. 中国移动通信信息安全管理与运行中心, 北京 100053
  • 收稿日期:2017-12-22 修回日期:2018-03-02 发布日期:2019-01-15
  • 通讯作者: 刘加,E-mail:liuj@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(U1836219)资助

Inactive-node detection and memory optimization in WFST decoder lattice generation algorithm

DING Jiawei1, LIU Jia1, ZHANG Weiqiang1, FENG Yunbo2, LIU Lijun2, YU Le2   

  1. 1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
    2. China Mobile Information Security Center, Beijing 100053, China
  • Received:2017-12-22 Revised:2018-03-02 Published:2019-01-15

摘要: 解码器引擎是语音识别系统的核心模块,而基于加权有限状态机(WFST)的解码器则是解码器的一种典型形式。分析静态WFST解码器在实际应用中的资源占用问题,提出一种在解码和词图生成过程中通过检测非活跃节点动态回收系统资源的策略。最后,在OpenKWS 15数据集上进行实验,证明该策略使解码器的内存消耗比不回收系统资源的解码器降低75%左右。

关键词: 语音识别解码器, 加权有限状态机, 工程应用, 内存回收

Abstract: Decoder is the core module of speech recognition system, and the decoder based on the weighted finite-state transducers (WFST) is a typical form of decoder. We analyze the resource occupation of WFST-based static decoder in practice, and propose a strategy for dynamical recovery of system resources by detecting inactive nodes during decoding and lattice generation. Finally, we carry out experiments on the OpenKWS 15 dataset to show that the decoder with this strategy consumes about 75% less memory than decoders that do not reclaim system resources.

Key words: speech recognition decoder, WFST, engineering application, memory recycling

中图分类号: