欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (3): 311-319.DOI: 10.7523/j.issn.2095-6134.2019.03.003

• 数学与物理学 • 上一篇    下一篇

一类具有强奇性的矩阵型偏微分方程的正解的存在性

双震, 孙义静   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2018-01-22 修回日期:2018-04-13 发布日期:2019-05-15
  • 通讯作者: 双震
  • 基金资助:
    国家自然科学基金(11571339,11771468)资助

Exsitence of positive solutions for matrix-type partial differential equations with strongly singular nonlinearities

SHUANG Zhen, SUN Yijing   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-22 Revised:2018-04-13 Published:2019-05-15

摘要: 研究矩阵型强奇异偏微分方程

其中,Ω⊂Rn是有界开集,Mx)是定义在Ω上的实对称矩阵,-p<-1,0 < q < 1,λ>0是参数,fx)∈L1(Ω),fx)>0 a.e.in Ω。证明,如果存在u0H01(Ω)满足∫Ωfx)|u0|1-pdx <+∞,则对任意的λ>0上述方程都有正H01-解,即慢速解。我们注意到,对于奇异方程,古典解即C2(Ω)∩CΩ)解不一定是H01(Ω)解。

关键词: H01-解, 实对称矩阵, 强奇性

Abstract: We investigate the strongly singular partial differential equations of matrix-type,

where Ω is a bound and open set in Rn, M(x) is a real symmetric matrix on Ω, -p<-1,0 < q < 1,λ>0 are parameters, f(x)∈L1(Ω),f(x)>0 a.e. in Ω. We prove that the above-mentioned equation admits at least one positive H01-solution when λ>0 if there exists u0H01(Ω) such that ∫Ωf(x)|u0|1-pdx <+∞. It should be noted that a classical solution, namely, the C2(Ω)∩C(Ω)-solution, is not necessarily a H01(Ω)-solution for singular equations.

Key words: H01-solution, real symmetric matrix, strong singularity

中图分类号: