欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (1): 1-5.DOI: 10.7523/j.issn.2095-6134.2020.01.001

• 数学与物理学 •    下一篇

高维乘积空间上分数次Hardy算子的最佳界

李翔1, 魏明权2, 燕敦验1   

  1. 1 中国科学院大学数学科学学院, 北京 100049;
    2 信阳师范学院数学与统计学院, 河南 信阳 464000
  • 收稿日期:2019-01-15 修回日期:2019-02-26 发布日期:2020-01-15
  • 通讯作者: 魏明权
  • 基金资助:
    Supported by the National Nature Science Foundation of China (11471039), Project of Henan Provincial Department of Education (18A110028), and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University

Sharp bounds for fractional Hardy operator on higher-dimensional product spaces

LI Xiang1, WEI Mingquan2, YAN Dunyan1   

  1. 1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    2 School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, Henan, China
  • Received:2019-01-15 Revised:2019-02-26 Published:2020-01-15
  • Supported by:
    Supported by the National Nature Science Foundation of China (11471039), Project of Henan Provincial Department of Education (18A110028), and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University

摘要: 得到高维乘积空间上分数次Hardy算子从L1(Rn1×…×Rnm)到wLQ(Rn1×…×Rnm)的最佳界。更一般地,还得到高维乘积空间上分数次Hardy算子从LP(Rn1×…×Rnm)到LQI(Rn1×…×Rnm)的算子范数。

关键词: 分数次哈代算子, 算子范数, 乘积空间, LQI

Abstract: In this paper, we get the sharp bounds for fractional Hardy operator on higherdimensional product spaces from L1(Rn1×…×Rnm) to the space wLQ(Rn1×…×Rnm). More generally, the norm of fractional Hardy operator on higher-dimensional product spaces from LP(Rn1×…×Rnm) to LQI(Rn1×…×Rnm) is obtained.

Key words: fractional Hardy operator, operator norm, product space, LQI

中图分类号: