欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (3): 352-359.DOI: 10.7523/j.issn.2095-6134.2020.03.008

• 电子科学 • 上一篇    下一篇

基于负样本多通道优化SSD网络的钢铁厂提取

卢凯旋1,2, 李国清3, 陈正超1, 昝露洋1,2, 李柏鹏1, 高建威1   

  1. 1. 中国科学院遥感与数字地球研究所, 北京 100094;
    2. 中国科学院大学资源与环境学院, 北京 100094;
    3. 河南省遥感测绘院, 郑州 450003
  • 收稿日期:2019-01-23 修回日期:2019-03-20 发布日期:2020-05-15
  • 通讯作者: 陈正超
  • 基金资助:
    中国科学院A类战略性先导科技专项(XDA19080302)资助

Extraction of steel plants based on optimized SSD network incorporating negative sample's multi channels

LU Kaixuan1,2, LI Guoqing3, CHEN Zhengchao1, ZAN Luyang1,2, LI Baipeng1, GAO Jianwei1   

  1. 1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute of Remote Sensing and Surveying and Mapping Henan, Zhengzhou 450003, China
  • Received:2019-01-23 Revised:2019-03-20 Published:2020-05-15

摘要: 准确提取钢铁厂对去产能监测和环境保护具有重要意义。传统的人工目视解译方法效率低、成本高,无法满足开展大区域钢铁厂监测的需求。以深度学习目标检测网络SSD为基础,构建面向遥感影像钢铁厂提取的深度学习目标检测网络,提出maxout模块,将负样本通路优化为多分支结构,突出难分负样本特征并提升网络对无用特征的抵制效果。利用国产GF-1数据对京津冀地区的钢铁厂进行快速自动提取实验。与人工解译的钢铁厂点位数据的对比表明,该目标检测方法的提取精度达到80%以上。

关键词: 深度学习, GF-1遥感影像, 钢铁厂提取, 京津冀地区, maxout模块, 目标检测

Abstract: It is important to accurately detect steel plants for capacity reduction monitoring and environmental protection. The traditional method is time-consuming and laborious, and can not be used to monitor the steel plants in large areas. We propose a stable and accurate method by adding a maxout module to SSD, namely, transforming the negative sample path into a multi-branch structure. The neural network learns abundant features of hard negative samples, and thereby increases resistance to the useless features. Meanwhile, we used the well-trained model to detect steel plants in the Jing-Jin-Ji area based on GF-1 data. The results were compared with the data of the steel plants obtained from visual interpretation. Our method detects steel plants in the Jing-Jin-Ji area with an accuracy of more than 80%.

Key words: deep learning, GF-1 data, steel plant detection, Jing-Jin-Ji area, maxout module, object detection

中图分类号: