欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (3): 387-397.DOI: 10.7523/j.issn.2095-6134.2020.03.012

• 计算机科学 • 上一篇    下一篇

基于胶囊网络的海量指纹纹型精准分类算法

李伯男1, 赵彤2,3, 吴敏2   

  1. 1. 中国科学院大学计算机与控制学院, 北京 101408;
    2. 中国科学院大学数学科学学院, 北京 100049;
    3. 中国科学院大数据挖掘与知识管理重点实验室, 北京 100049
  • 收稿日期:2018-11-15 修回日期:2019-01-15 发布日期:2020-05-15
  • 通讯作者: 赵彤
  • 基金资助:
    国家自然科学基金(11731013,U19B2040,11571014)和中国科学院大学优秀青年教师科研能力提升项目资助

Fast exact classification algorithm of massive fingerprint patterns based on capsule network

LI Bonan1, ZHAO Tong2,3, WU Min2   

  1. 1. School of Computer and Control, University of Chinese Academy of Sciences, Beijing 101408, China;
    2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-11-15 Revised:2019-01-15 Published:2020-05-15

摘要: 指纹识别作为"物证之首"一直被认为是最可靠的生物特征识别方法,目前已经广泛应用在刑事侦查、居民身份认定及核实等领域。这类应用的特点在于需将待识别指纹与海量指纹数据库中的全部指纹做快速比对,以确定该枚指纹所有人的身份。为了提高指纹识别速度,海量指纹数据库会按照纹型拆分成若干类,待识别指纹仅和同类指纹做逐一比对。随着指纹采集相关的法律生效,近几年指纹数据库规模迅速扩大。一方面库内同类纹型的图像差异性显著增加,另一方面不同类指纹图像的相似性也在增加,指纹分类算法误分率大幅增加。"海量指纹纹型精准分类问题"迅速成为公安应用及指纹识别领域研究的热点。针对上述问题,提出一种基于胶囊网络的指纹纹型精准分类模型Cap-FingerNet。该模型一方面将胶囊网络独有的网络特性与指纹图像特有的自相似纹理特征相结合,可构成更为鲁棒的特征提取器及分类器。新引入的Batch-Normalization方法还可避免典型胶囊网络易于出现"梯度消失"的不足。另一方面,引入注意力胶囊机制,使得Cap-FingerNet较典型胶囊网络更准确且全面地提取出指纹图像细节信息,并使用全局压缩算法对胶囊进行有效挤压。Cap-FingerNet模型在某公安刑侦指纹数据库的4分类纹分类上获得99.63%的极高准确率,并在国际公开指纹数据集NIST-DB04的纹型4分类和5分类任务上分别测得96.25%和94.5%的准确率,取得了目前文献中最好成绩。

关键词: 指纹分类, 胶囊网络, 注意力胶囊, 全局压缩

Abstract: Fingerprint identification has been regarded as the most reliable biometric identification method, which has been widely used in the fields of criminal investigation, resident identification, and immigration personnel identification. The feature of these applications is that one query fingerprint needs to be quickly and accurately compared with all the fingerprints in the mass fingerprint database to identify the owner of the fingerprint. In recent years, the size of the fingerprint database was expanded rapidly with the law of fingerprint collection coming into effect. For one thing the image difference bewteen fingerprints in the same type increases significantly, for another the similarity of different types of fingerprint images also increases, which makes the misclassification rate of fingerprint classification algorithm greatly increase. At the same time, "massive fingerprint precision classification" has become a hot spot in the field of public security application and fingerprint identification. Aiming at solving the above problems, we propose an accurate fingerprint classification mode Caps-FingerNet based on capsule networks. On the one hand, the mode combines the unique network characteristics of the capsule networks with the individual self-similar texture features of fingerprint images to form a more robust feature extractor and classifier. Meanwhile, the batch-normalization method avoids the shortcoming of gradient disappearance in typical capsule networks. On the other hand, the attention capsule mechanism is innovatively introduced in this study, making Caps-FingerNet more accurate and comprehensive than typical capsule networks in extracting fingerprint image details, and the global squashing algorithm is used to squash the capsule effectively. Cap-FingerNet achieves an extreme accuracy of 99.63% in the four-class fingerprint classification of a provincial public security criminal fingerprint database. The accuracy rates of 96.25% and 94.5% were measured on the four and five classification tasks of NIST-DB04 fingerprint dataset, respectively.

Key words: fingerprint classification, capsule networks, attention capsule, global squashed

中图分类号: