[1] Henry E R. Classification and uses of finger prints[M].3rd ed. London:HM Stationery Office, 1905.
[2] Cao K, Pang L, Liang J, et al. Fingerprint classification by a hierarchical classifier[J]. Pattern Recognition, 2013, 46(12):3186-3197.
[3] Jung H W, Lee J H. Noisy and incomplete fingerprint classification using local ridge distribution models[J]. Pattern Recognition, 2015, 48(2):473-484.
[4] Wang S, Zhang W W, Wang Y S. Fingerprint classification by directional fields[C]//Multimodal Interfaces. Pittsburgh:Fourth IEEE International Conference on Multimodal Interfaces, 2002:395-399.
[5] Yao Y, Frasconi P, Pontil M. Fingerprint classification with combinations of support vector machines[C]//International Conference on Audio-and Video-Based Biometric Person Authentication. Halmstad:Springer, Berlin, Heidelberg, 2001:253-258.
[6] Chang J H, Fan K C. A new model for fingerprint classification by ridge distribution sequences[J]. Pattern Recognition, 2002, 35(6):1209-1223.
[7] Hong L, Jain A. Classification of fingerprint images[C]//Proceedings of the Scandinavian Conference on Image Analysis. Kangerlussuaq:IAPR,1999, 2:665-672.
[8] Kawagoe M, Tojo A. Fingerprint pattern classification[J]. Pattern Recognition, 1984, 17(3):295-303.
[9] Zhang Q, Yan H. Fingerprint classification based on extraction and analysis of singularities and pseudo ridges[J]. Pattern Recognition, 2004, 37(11):2233-2243.
[10] Kamijo M. Classifying fingerprint images using neural network:Deriving the classification state[C]//IEEE International Conference on Neural Networks. San Francisco:IEEE,1993:1932-1937.
[11] Baldi P, Chauvin Y. Neural networks for fingerprint recognition[J]. Neural Computation, 1993, 5(3):402-418.
[12] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:visualising image classification models and saliency maps[J]. arXiv preprint arXiv:1312.6034, 2013.
[13] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(6):1137-1149.
[15] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448.
[16] W Wen Y, Zhang K, Li Z, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision. Amsterdam:Springer, Cham, 2016:499-515.
[17] Schroff F, Kalenichenko D, Philbin J. Facenet:a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE,2015:815-823.
[18] Liu J, Deng Y, Bai T, et al. Targeting ultimate accuracy:face recognition via deep embedding[J]. arXiv preprint arXiv:1506.07310, 2015.
[19] Salamon J, Bello J P. Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24(3):279-283.
[20] Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014.
[21] Ge S, Bai C, Liu Y, et al. Deep and discriminative feature learning for fingerprint classification[C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). Chengdu:IEEE, 2017:1942-1946.
[22] Wang R, Han C, Wu Y, et al. Fingerprint classification based on depth neural network[J]. arXiv preprint arXiv:1409.5188, 2014.
[23] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems 30. Long Beach,2017:3856-3866.
[24] Hinton G E, Sabour S, Frosst N. Matrix capsules with EM routing[C]//International Conference of Learning Representation. Vancouver, 2018:3859-3869.
[25] Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.
[26] Zeiler M D, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks[J]. arXiv preprint arXiv:1301.3557, 2013.
[27] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
[28] Deng L. The MNIST database of handwritten digit images for machine learning research[best of the web] [J]. IEEE Signal Processing Magazine, 2012, 29(6):141-142.
[29] Xiao H, Rasul K, Vollgraf R. Fashion-mnist:a novel image dataset for benchmarking machine learning algorithms[J]. arXiv preprint arXiv:1708.07747, 2017.
[30] LeCun Y, Huang F J, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting[C]//Computer Vision and Pattern Recognition. Washington:IEEE, 2004, 2:II-104.
[31] Wilson C L. Massively parallel neural network recognition[C]//International Joint Conference on Neural Networks. IEEE, 1992, 3:227-232.
[32] Karu K, Jain A K. Fingerprint classification[J]. Pattern Recognition, 1996, 29(3):389-404.
[33] Senior A. A hidden Markov model fingerprint classifier[C]//Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on. Beijing:IEEE, 1997, 1:306-310.
[34] Jain A K, Prabhakar S, Hong L. A multichannel approach to fingerprint classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4):348-359.
[35] Hong L, Jain A. Classification of fingerprint images[C]//Proceedings of the scandinavian conference on image analysis. Ystad:ACM,1999, 2:665-672.
[36] Cappelli R, Lumini A, Maio D, et al. Fingerprint classification by directional image partitioning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):402-421.
[37] Jain A K, Minut S. Hierarchical kernel fitting for fingerprint classification and alignment[C]//Object Recognition Supported by User Interaction for Service Robots. Quebec:IEEE, 2002, 2:469-473.
[38] Yao Y, Marcialis G L, Pontil M, et al. Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines[J]. Pattern Recognition, 2003, 36(2):397-406.
[39] Chang J H, Fan K C. A new model for fingerprint classification by ridge distribution sequences[J]. Pattern Recognition, 2002, 35(6):1209-1223.
[40] Shalash W M, Abou-Chadi F. A fingerprint classification technique using multilayer SOM[C]//Proceedings of the Seventeenth National Radio Science Conference. Egypt:IEEE, 2000:C26/1-C26/8. |