欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (4): 532-542.DOI: 10.7523/j.ucas.2020.0014

• 电子信息与计算机科学 • 上一篇    下一篇

基于LSTM和启发式方法的遥感卫星地面站天线智能调度

孙文军1,2, 马广彬1, 田妙苗1, 林友明1, 黄鹏1   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2020-02-02 修回日期:2020-05-31 发布日期:2021-05-31
  • 通讯作者: 马广彬
  • 基金资助:
    国家重点研发计划项目(2017YFC1405600)资助

Remote sensing satellite ground station antenna intelligent scheduling with LSTM and heuristic search

SUN Wenjun1,2, MA Guangbin1, TIAN Miaomiao1, LIN Youming1, HUANG Peng1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-02-02 Revised:2020-05-31 Published:2021-05-31

摘要: 遥感卫星地面站天线调度是解决遥感卫星数据接收天线资源不足和提高资源使用效率的有效途径。由于天线调度规则复杂,提出一种长短期记忆神经网络和启发式搜索相结合的智能调度方法。首先,使用长短期记忆神经网络模型从历史调度数据中提取天线使用规则,并使用该规则为遥感卫星数据接收任务分配接收天线,得到初始调度方案;其次,使用启发式方法,对初始方案中数据联合接收和资源选择冲突两个问题加以修正,得到实际可行的调度方案。结果表明:本方法与结合启发式规则的遗传算法相比在资源利用率和计算效率上均有提升,证明了本方法的有效性。

关键词: 遥感卫星, 地面站天线调度, 长短期记忆神经网络, 启发式搜索, 智能调度

Abstract: In order to solve the shortage of remote sensing satellite data receiving antennas and improve the utilization of the ground antennas, an intelligent scheduling method which combines LSTM (long short-term memory network) and heuristic search was proposed. First, LSTM is used to extract the antenna using rules from the historical scheduling data of antennas, and then the initial scheduling scheme is obtained by allocating an antenna for each remote sensing data receiving task with the rules; Second, the heuristic search is used to solve the two problems of joint data reception and resource selection conflict in the initial plan, and obtain a practical and feasible scheduling plan. The experiment results show that the method is useful to deal with ground antenna scheduling, improve resource efficiency and reduce computing time to some extent when compared with genetic algorithm.

Key words: remote sensing satellite, ground station antennas scheduling, long short-term memory (LSTM) neural network, heuristic search, intelligent scheduling

中图分类号: