欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (4): 524-531.DOI: 10.7523/j.ucas.2020.0018

• 电子信息与计算机科学 • 上一篇    下一篇

基于注意力生成对抗网络的图像强光去除

赵心驰1,2,3, 姜策1,2, 何为1   

  1. 1. 中国科学院上海微系统与信息技术研究所中国科学院无线传感网与通信重点实验室, 上海 201800;
    2. 中国科学院大学, 北京 100049;
    3. 成都中科微信息技术研究院有限公司, 成都 610000
  • 收稿日期:2020-02-13 修回日期:2020-06-10 发布日期:2021-05-31
  • 通讯作者: 何为
  • 基金资助:
    Supported by the National Key Research and Development Program of China (2018YFC1505204-2), Key Deployment Project of Chinese Academy of Sciences(KFZD-SW-431), Chengdu’s Major Scientific and Technological Innovation Projects(2019-YF08-00082-GX)

Removing highlights from single image via an attention-auxiliary generative adversarial network

ZHAO Xinchi1,2,3, JIANG Ce1,2, HE Wei1   

  1. 1. Key Lab of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Chengdu ZhongKeWei Information Technology Research Institute Co Ltd, Chengdu 610000, China)
  • Received:2020-02-13 Revised:2020-06-10 Published:2021-05-31
  • Supported by:
    Supported by the National Key Research and Development Program of China (2018YFC1505204-2), Key Deployment Project of Chinese Academy of Sciences(KFZD-SW-431), Chengdu’s Major Scientific and Technological Innovation Projects(2019-YF08-00082-GX)

摘要: 图像中的强光在一定程度上会降低图像的质量,本文致力于从受到强光影响的图像中去除强光并生成清晰图像。为解决这个问题,提出一种带有注意力辅助模块的生成对抗网络。它主要由加入压缩-激励模块的卷积长短期记忆网络和注意力矩阵辅助模块组成,注意力辅助模块可以指导自动编码器生成清晰的图像。该方法可以轻松地移植处理其他类似的图像恢复问题。实验证明,改进后的网络体系结构是有效的并且有一定的意义。

关键词: 生成对抗网络, 注意力矩阵辅助, 压缩-激励模块, 图像恢复, 强光去除

Abstract: The highlights in the image will degrade the image quality to some extent. In this paper, we focus on visually removing the highlights from degraded images and generating clean images. In order to solve this problem, we present an attention-auxiliary generative adversarial networks. It mainly consists of the convolutional long short term memory network with squeeze-and-excitation (SE) block and the map-auxiliary module. Map-auxiliary can instruct the autoencoder to generate clean images. The injection of SE block and map-auxiliary module to the generator is the main contribution of this paper. And our proposed deep learning-based approach can be easily ported to handle other similar image recovery problems. Experiments prove that the network architecture is effective and makes a lot of sense.

Key words: GAN (generative adversarial networks), attention map-auxiliary, squeeze-andexcitation block, image restoration, highlights-removal

中图分类号: