欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (4): 555-565.DOI: 10.7523/j.ucas.2021.0083

• 电子信息与计算机科学 • 上一篇    下一篇

协作机器人运动学应用标定方法

李海旺1,2,3, 隋春平1,2, 王宇坤1,2,3, 山天涯1,2, 霍少达1,2,3   

  1. 1 中国科学院沈阳自动化研究所, 沈阳 110016;
    2 中国科学院机器人与智能制造创新研究院, 沈阳 110169;
    3 东北大学机械工程与自动化学院, 沈阳 110819
  • 收稿日期:2021-06-28 修回日期:2021-12-27 发布日期:2021-12-31
  • 通讯作者: 隋春平,E-mail:cpsui@sia.cn
  • 基金资助:
    国家重点研发计划项目(2017YFF0107800)资助

Kinematics application calibration method of collaborative robot

LI Haiwang1,2,3, SUI Chunping1,2, WANG Yukun1,2,3, SHAN Tianya1,2, HUO Shaoda1,2,3   

  1. 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;
    3 Institute of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2021-06-28 Revised:2021-12-27 Published:2021-12-31

摘要: 机器人的几何参数误差导致其绝对定位精度较差,会制约其在离线编程方面的应用。协作机器人关节刚度小,受其自重和末端负载的影响柔性变形大,会进一步降低其定位精度。针对该问题,对相邻3轴(2~4轴)平行型协作机器人展开运动学标定方法研究,并面向工程实际开发了相应的标定软件。首先,提出一种非线性的几何参数辨识模型,并利用模型非线性方程组的逆函数原理进行模型冗余性分析;进一步建立关节刚度辨识模型;考虑到几何参数辨识和关节刚度辨识是互相干扰的,提出一种基于迭代思想的综合辨识方法。应用该方法对UR5机器人进行标定实验,实验结果显示,标定后机器人空载和负载时的绝对定位精度相比标定前分别提高75.5%和85.1%,验证了本文标定方法的有效性。

关键词: 协作机器人, 运动学标定, 非线性, 几何参数, 关节刚度

Abstract: The geometric parameter error of robot leads to its poor absolute positioning accuracy, which restricts its application in off-line programming. The joint stiffness of the collaborative robot is small, so its flexible deformation is largely affected by its self-weight and end load, which further reduce its positioning accuracy. Aiming at this problem, the kinematics calibration method of adjacent three-axis parallel(2-4 axis) cooperative robot is studied, and the corresponding calibration software is developed to apply the method to engineering practice. Firstly, a nonlinear geometric parameter identification model is proposed, and the redundancy of the model parameters is analyzed by using the inverse function principle of the model's nonlinear equations. Further, a joint stiffness identification model is established. Considering the mutual interference between geometric parameter identification and joint stiffness identification, a comprehensive identification method based on iterative thought is proposed. The calibration experiment of UR5 robot is carried out using this method. The experimental results show that the absolute positioning accuracy of the robot under no-load and load after calibration is improved by 75.5% and 85.1%, respectively, compared with that before calibration, which verifies the effectiveness of the calibration method in this paper.

Key words: collaborative robot, kinematics calibration, nonlinearity, geometric parameter, joint stiffness

中图分类号: