欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2024, Vol. 41 ›› Issue (1): 65-69.DOI: 10.7523/j.ucas.2022.041

• 地质与地球科学 • 上一篇    下一篇

无限元-谱元混合法在2.5维引力位计算中的应用

任骏声, 张怀   

  1. 中国科学院大学地球与行星科学学院 中国科学院计算地球动力学重点实验室, 北京 100049
  • 收稿日期:2022-03-14 修回日期:2022-04-15 发布日期:2022-04-26
  • 通讯作者: 张怀,E-mail:hzhang@ucas.ac.cn
  • 基金资助:
    国家杰出青年科学基金(41725017)资助

Application of infinite-spectral hybrid method in 2.5-dimensional gravitational potential calculation

REN Junsheng, ZHANG Huai   

  1. CAS Key Laboratory of Computational Geodynamics(KLCG), College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-03-14 Revised:2022-04-15 Published:2022-04-26

摘要: 引力位是地球自由振荡数值模拟中不可或缺的一部分,也是重力异常研究中需要计算的对象。由于引力位满足无界的泊松-拉普拉斯方程,其在无穷远边界处为零,这对数值模拟造成了困扰。针对此,采用无限元-谱元混合法,直接对无穷远边界进行拟合,不再对边界条件做近似;同时考虑到三维地球模型计算效率问题,采用2.5维控制方程;最后,通过数值试验,验证了方法的准确性。

关键词: 无限元, 谱元, 引力位, 2.5维, 泊松-拉普拉斯方程

Abstract: Gravitational potential is an inseparable part of the earth’s free oscillation simulation. It is also the object of calculation in the study of gravity anomalies. Since the gravitational potential satisfies the unbounded Poisson-Laplace equation, which is zero at infinity, this is frustrating for numerical simulations. The purpose of numerical simulation is usually achieved by limiting the solution domain and approximating its boundary conditions. We attempt to use the infinite-spectral hybrid method to fit the infinity boundary directly and no longer approximate the boundary conditions. Considering the computational efficiency of the 3D Earth model, this study uses a 2.5-dimensional governing equation. Finally, numerical experiments verify the factual accuracy of this method.

Key words: infinite element, SEM, gravitational potential, 2.5D, Poisson-Laplace’s equation

中图分类号: