[1] Sciotti M, Pastina D, Lombardo P. Exploiting the polarimetric information for the detection of ship targets in non-homogeneous SAR images[C]//IEEE International Geoscience and Remote Sensing Symposium. June 24-28, 2002, Toronto, ON, Canada. IEEE, 2002: 1911-1913. DOI: 10.1109/IGARSS.2002.1026297. [2] 林旭, 洪峻, 孙显, 等. ScanSAR图像舰船目标快速检测方法[J]. 中国科学院大学学报, 2013, 30(6):793-799. DOI: 10.7523/j.issn.2095-6134.2013.06.012. [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81. [4] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824. [5] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2016: 1440-1448. DOI: 10.1109/ICCV.2015.169. [6] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [7] He K M, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. DOI: 10.1109/TPAMI.2018.2844175. [8] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91. [9] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2. [10] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6517-6525. DOI: 10.1109/CVPR.2017.690. [11] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018: arXiv: 1804.02767. (2018-04-08) [2023-02-20]. https://arxiv.org/abs/1804.02767. [12] Bochkovskiy A, Wang C-Y, Liao H-Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934. (2020-04-23) [2023-02-20]. https://arxiv.org/abs/2004.10934. [13] Iandola F N, Moskewicz M W, Ashraf K, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size[EB/OL]. arXiv: 1602.07360. (2016-02-24) [2023-02-20]. https://arxiv.org/abs/1602.07360. [14] Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv: 1704.04861. (2017-04-17) [2023-02-20]. https://arxiv.org/abs/1704.04861. [15] Sandler M, Howard A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474. [16] Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient cnn architecture design[C]//European Conference on Computer Vision. Cham: Springer, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8. [17] Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6848-6856. DOI: 10.1109/CVPR.2018.00716. [18] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165. [19] Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. arXiv:2107.08430. (2021-07-18) [2023-02-20]. https://arxiv.org/abs/2107.08430. [20] Law H, Deng J. CornerNet: detecting objects as paired keypoints[C]//European Conference on Computer Vision. Cham: Springer, 2018: 765-781. DOI: 10.1007/978-3-030-01264-9_45. [21] Tian Z, Shen C H, Chen H, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2020: 9626-9635. DOI: 10.1109/ICCV.2019.00972. [22] 刘方坚, 李媛. 基于视觉显著性的SAR遥感图像NanoDet舰船检测方法[J]. 雷达学报, 2021, 10(6): 885-894. DOI: 10.12000/JR21105. [23] Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913. [24] 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841-851. DOI: 10.12000/JR19111. [25] Song G L, Liu Y, Wang X G. Revisiting the sibling head in object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 11560-11569. DOI: 10.1109/CVPR42600.2020.01158. [26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745. [27] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [28] 李松, 魏中浩, 张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1): 75-83. DOI: 10.7523/j.issn.2095-6134.2018.01.010. [29] Lee Y, Park J. CenterMask: real-time anchor-free instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 13903-13912. DOI: 10.1109/CVPR42600.2020.01392. [30] Li D, Hu J, Wang C H, et al. Involution: inverting the inherence of convolution for visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 12316-12325. DOI: 10.1109/CVPR46437.2021.01214. [31] Feng C J, Zhong Y J, Gao Y, et al. TOOD: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2022: 3490-3499. DOI: 10.1109/ICCV48922.2021.00349. [32] Xu S, Wang X, Lv W, et al. PP-YOLOE: an evolved version of YOLO[EB/OL]. arXiv:2203.16250. (2022-03-20) [2023-02-20]. https://arxiv.org/abs/2203.16250. [33] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 658-666. DOI: 10.1109/CVPR.2019.00075. [34] Zhang Y-F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[EB/OL]. arXiv: 2101.08158. (2021-01-20) [2023-02-20].https://arxiv.org/abs/2101.08158. [35] 谭显东, 彭辉. 改进YOLOv5的SAR图像舰船目标检测[J]. 计算机工程与应用, 2022, 58(4): 247-254. DOI: 10.3778/j.issn.1002-8331.2108-0308. [36] Zhang T W, Zhang X L, Li J W, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. DOI: 10.3390/rs13183690. [37] Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient transfer learning[EB/OL]. arXiv: 1611.06440. (2016-11-19) [2023-02-20]. https://arxiv.org/abs/1611.06440. [38] Wang Y Y, Wang C, Zhang H, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. DOI: 10.3390/rs11070765. |