欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2024, Vol. 41 ›› Issue (5): 654-664.DOI: 10.7523/j.ucas.2023.010

• 电子信息与计算机科学 • 上一篇    

基于MFF-Deeplabv3+网络的高分辨率遥感影像建筑物提取方法

陈经纬1,2, 李宇1, 陈俊1,3,4, 张洪群1   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049;
    3. 中国科学院计算机网络信息中心, 北京 100083;
    4. 中国科学院大学计算机科学与技术学院, 北京 100049
  • 收稿日期:2022-11-23 修回日期:2023-02-17 发布日期:2023-03-21
  • 通讯作者: 李宇,E-mail:liyu202615@aircas.ac.cn
  • 基金资助:
    国家自然科学基金(61501460)资助

Building extraction method based on MFF-Deeplabv3+ network for high-resolution remote sensing images

CHEN Jingwei1,2, LI Yu1, CHEN Jun1,3,4, ZHANG Hongqun1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China;
    4. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-11-23 Revised:2023-02-17 Published:2023-03-21

摘要: 为提升高分辨率遥感影像中建筑物提取的精度,提出一种基于MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+)网络的高分辨率遥感影像建筑物提取方法。首先,设计多尺度特征增强模块,使网络能够捕获更多尺度的上下文信息;然后,设计特征融合模块,有效融合深层特征与浅层特征,减少细节信息的丢失;最后,引入注意力机制模块,自适应地选择准确特征。在Inria建筑物数据集的对比实验中,MFF-Deeplabv3+在PA、MPA、FWIoU、MIoU指标中取得最高精度,分别为95.75%、91.22%、92.12%和85.01%,同时在WHU建筑物数据集的泛化实验中取得不错的结果。结果表明,本方法在高分辨率遥感影像中提取建筑物信息精度较高,且具有较好的泛化性。

关键词: 建筑物提取, 深度学习, 注意力机制, 多尺度特征增强, 高分辨率遥感影像

Abstract: Automatic extraction of building information from high-resolution remote sensing images is of great significance in the fields of environmental monitoring, earthquake mitigation, and land use, making it a research hotspot in the field of high-resolution remote sensing applications. In order to improve the accuracy of building extraction from high-resolution remote sensing images, a building extraction method based on MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+) network for high-resolution remote sensing images is proposed in this paper. First, the multi-scale feature enhancement module is designed to enable the network to capture more scale context information; then, the feature fusion module is designed to effectively fuse deep features with shallow features to reduce the loss of detail information; finally, the attention mechanism module is introduced to select accurate features adaptively. In the comparison experiments of the Inria building dataset, MFF-Deeplabv3+ achieved the highest accuracy in PA, MPA, FWIoU, and MIoU metrics with 95.75%, 91.22%, 92.12%, and 85.01%, respectively, while the generalization experiments of the WHU building dataset achieved good results. The results show that this method extracts building information from high-resolution remote sensing images with high accuracy and strong generalization.

Key words: building extraction, deep learning, attention mechanism, multi-scale feature enhancement, high-resolution remote sensing images

中图分类号: