[1] Farias Nazário R T, e Silva J L, Sobreiro V A, et al. A literature review of technical analysis on stock markets[J]. The Quarterly Review of Economics and Finance, 2017, 66: 115-126. DOI: 10.1016/j.qref. 2017.01.014. [2] 徐飏, 王艳, 赵子龙. 基于资产选择的投资组合模型与中国股市实证检验[J]. 中国科学院大学学报, 2015, 32(4): 446-452. DOI: 10.7523/j.issn. 2095-6134. 2015. 04.004. [3] 邓凯旭, 宋宝瑞. 小波变换在金融数据分析中的应用[J]. 数理统计与管理, 2006, 25(2): 215-219. DOI: 10.13860/j.cnki.sltj.2006.02.016. [4] Xu Y, Zhang G S. Application of Kalman filter in the prediction of stock price[C]//Proceedings of the 5th International Symposium on Knowledge Acquisition and Modeling. June 27-28, 2015. London, UK. Paris, France: Atlantis Press, 2015: 197-198. DOI: 10.2991/kam-15.2015.53. [5] Ariyo A A, Adewumi A O, Ayo C K. Stock price prediction using the ARIMA model [C]//2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. March 26-28, 2014, Cambridge, UK. IEEE, 2015: 106-112. DOI: 10.1109/UKSim.2014.67. [6] 叶五一, 赵晋海, 缪柏其. 欧美与国内股市流动性风险间的相互关系及风险溢出效应研究:流行病爆发背景下的分析[J]. 数理统计与管理, 2021, 40(2): 292-309. DOI: 10.13860/j.cnki.sltj. 20201205-002. [7] 次必聪,张品一. 基于ARIMA-LSTM模型的金融时间序列预测[J].统计与决策, 2022, 38(11): 145-149. DOI: 10.13546/j.cnki.tjyjc.2022.11.029. [8] Feng F L, He X N, Wang X, et al. Temporal relational ranking for stock prediction[J]. ACM Transactions on Information Systems, 37(2)Article No. 27, DOI: 10.1145/3309547. [9] Chen C, Zhao L, Bian J, et al. Investment behaviors can tell what inside: exploring stock intrinsic properties for stock trend prediction [C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. August 4-8, 2019, Anchorage, AK, USA. New York: ACM, 2019: 2376-2384. DOI: 10.1145/3292500. 3330663. [10] Tetlock P C, Saar-Tsechansky M, Macskassy S. More than words: quantifying language to measure firms’ fundamentals[J]. The Journal of Finance, 2008,63(3):1437-1467. DOI: 10.1111/j.1540-6261. 2008.01362.x. [11] 段江娇,刘红忠,曾剑平.投资者情绪指数、分析师推荐指数与股指收益率的影响研究:基于我国东方财富网股吧论坛、新浪网分析师个股评级数据[J].上海金融,2014(11):60-64.DOI:10.13910/j.cnki.shjr.2014.11.012. [12] Ewing B T. The transmission of shocks among S&P indexes[J]. Applied Financial Economics, 2002, 12(4):285-290. DOI: 10.1080/09603100110090172. [13] 杜伟锦, 何桃富. 我国证券市场的板块联动效应及模糊聚类分析[J]. 商业研究, 2005(22): 41-45. DOI: 10.13902/j.cnki.syyj.2005.22.014. [14] Salvador S, Chan P. Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11(5):561-580. DOI:10.3233/IDA-2007-11508. [15] Chen J, Gupta A K. A Bayesian approach to the statistical analysis of a smooth-abrupt change point model[J]. Advances and Applications in Statistics, 2007,7(1):115-125. [16] Graves A. Generating sequences with recurrent neural networks[EB/OL]. 2013. arXiv: 1308.0850. (2014-06-05)[2023-02-29].https://arxiv.org/abs/1308.0850. [17] Yan R, Song Y P, Wu H A. Learning to respond with deep neural networks for retrieval-based human-computer conversation system[C]// Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. July 17-21, 2016, Pisa, Italy. New York, NY, USA: ACM, 2016: 55-64. DOI: 10.1145/2911451. 2911542. [18] Chen J Y, Li S E, Tomizuka M. Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5068-5078. DOI: 10.1109/TITS.2020.3046646. [19] Mihalcea R, Tarau P. TextRank: bringing order into Text[C/OL]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Barcelona, Spain: Association for Computational Linguistics,2004:404-411(2004-07-01)[2023-02-29]. https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf. [20] Jiang F W, Lee J, Martin X, et al. Manager sentiment and stock returns[J]. Journal of Financial Economics, 2019, 132(1): 126-149. DOI: 10.1016/j.jfineco.2018. 10.001. [21] Campbell J Y, Thompson S B. Predicting excess stock returns out of sample: can anything beat the historical average?[J]. The Review of Financial Studies, 2008, 21(4): 1509-1531. DOI: 10.1093/rfs/hhm055. |