[1] Fuentes Reyes M, Auer S, Merkle N, et al.SAR-to-optical image translation based on conditional generative adversarial networks—Optimization, opportunities and limits[J]. Remote Sensing, 2019, 11(17): 2067. DOI:10.3390/rs11172067. [2] Isola P, Zhu J Y, Zhou T H, et al.Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5967-5976. DOI: 10.1109/CVPR.2017.632. [3] Bermudez J D, Happ P N, Oliveira D A B, et al. SAR to optical image synthesis for cloud removal with generative adversarial networks[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, IV-1: 5-11. DOI:10.5194/isprs-annals-iv-1-5-2018. [4] Grohnfeldt C, Schmitt M, Zhu X X.A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. July 22-27, 2018, Valencia, Spain. IEEE, 2018: 1726-1729. DOI:10.1109/IGARSS.2018.8519215. [5] Ebel P, Schmitt M, Zhu X X.Cloud removal in unpaired Sentinel-2 imagery using cycle-consistent GAN and SAR-optical data fusion[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. September 26 - October 2, 2020, Waikoloa, HI, USA. IEEE, 2020: 2065-2068. DOI:10.1109/IGARSS39084.2020.9324060. [6] Gao J H, Yuan Q Q, Li J E, et al.Cloud removal with fusion of high resolution optical and SAR images using generative adversarial networks[J]. Remote Sensing, 2020, 12(1): 191. DOI:10.3390/rs12010191. [7] Zuo Z C, Li Y X.A SAR-to-optical image translation method based on PIX2PIX[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. July 11-16, 2021, Brussels, Belgium. IEEE, 2021: 3026-3029. DOI:10.1109/IGARSS47720.2021.9555111. [8] 王磊. 深度学习框架下的极化SAR影像信息表达与分类研究[D]. 武汉: 武汉大学,2020. DOI:10.27379/d.cnki.gwhdu.2020.000008. [9] Baier G, Deschemps A, Schmitt M, et al.Synthesizing optical and SAR imagery from land cover maps and auxiliary raster data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. DOI:10.1109/TGRS.2021.3068532. [10] Yang X, Wang Z H, Zhao J Y, et al.FG-GAN: A fine-grained generative adversarial network for unsupervised SAR-to-optical image translation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. DOI:10.1109/TGRS.2022.3165371. [11] Mao X D, Li Q, Xie H R, et al.Least squares generative adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2813-2821. DOI:10.1109/ICCV.2017.304. [12] Arjovsky M, Chintala S, Bottou L.Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning (PMLR) - Volume 70. August 6 - 11, 2017, Sydney, NSW, Australia. New York: ACM, 2017: 214-223.DOI: 10.5555/3305381.3305404 [13] Karras T, Laine S, Aila T.A style-based generator architecture for generative adversarial networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 4396-4405. DOI: 10.1109/CVPR.2019.00453. [14] Wang T C, Liu M Y, Zhu J Y, et al.High-resolution image synthesis and semantic manipulation with conditional GANs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 8798-8807. DOI:10.1109/CVPR.2018.00917. [15] Zhang H, Goodfellow I, Metaxas D, et al.Self-attention generative adversarial networks[C]// Proceedings of the 36th International Conference on Machine Learning (PMLR) - Volume 97. June 9 - 15, 2019, Long Beach, California, USA. 2019: 7354-7363. DOI:10.48550/arXiv.1805.08318 [16] Schmitt M, Hughes L H, Zhu X X. The sen1-2 dataset for deep learning in sar-optical data fusion[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, IV-1: 141-146. DOI: 10.5194/isprs-annals-iv-1-141-2018. [17] Uziel R, Ronen M, Freifeld O.Bayesian adaptive superpixel segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27 - November 2, 2019, Seoul, Korea (South). IEEE, 2020:8469-8478.DOI:10.1109/ICCV.2019.00856. [18] Johnson J, Alahi A, Li F F.Perceptual losses for real-time style transfer and super-resolution[C]//ECCV 2016: 14th European Conference on Computer Vision, October 11-14, 2016, Amsterdam, The Netherlands, Proceedings, Part II 14. Springer International Publishing, 2016: 694-711. DOI:10.1007/978-3-319-46475-6_43. [19] Louis, J. Sentinel 2 MSI—Level 2A Product Definition: Issue 4.4[EB/OL]. (2016.04.01)[2022.09.21]. https://sentinel.esa.int/documents/247904/1848117/Sentinel-2-Level-2A-Product-Definition-Document.pdf. [20] Kingma D P, Ba J. Adam: A method for stochastic optimization[EB/OL].2014: arXiv: 1412.6980.(2014-12-22)[2023-02-12] https://arxiv.org/abs/1412.6980.pdf. [21] Heusel M, Ramsauer H, Unterthiner T, et al.GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9, 2017, Long Beach, California, USA. New York: ACM, 2017: 6629-6640. DOI:10.48550/arXiv.1706.08500. [22] Salimans T, Goodfellow I, Zaremba W, et al.Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. December 5 - 10, 2016, Barcelona, Spain. New York: ACM, 2016: 2234-2242. DOI:10.48550/arXiv.1606.03498. [23] Szegedy C, Vanhoucke V, Ioffe S, et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVRP). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2818-2826.DOI:10.1109/CVPR.2016.308. [24] Wang Y J, Li J H, Lu Y, et al.Image quality evaluation based on image weighted separating block peak signal to noise ratio[C]//International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003. December 14-17, 2003, Nanjing, China. IEEE, 2004: 994-997. DOI:10.1109/ICNNSP.2003.1281036. [25] Sara U, Akter M, Uddin M S.Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. DOI:10.4236/jcc.2019.73002. [26] Richardson E, Alaluf Y, Patashnik O, et al.Encoding in style: a StyleGAN encoder for image-to-image translation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 2287-2296. DOI: 10.1109/CVPR46437.2021.00232. [27] Tang H, Xu D, Sebe N, et al.Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019: 2417-2426. DOI:10.1109/CVPR.2019.00252. [28] Gao F, Xu X X, Yu J, et al.Complementary, heterogeneous and adversarial networks for image-to-image translation[J]. IEEE Transactions on Image Processing, 2021, 30: 3487-3498. DOI:10.1109/TIP.2021.3061286. [29] Esser P, Rombach R, Ommer B.Taming transformers for high-resolution image synthesis[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 12868-12878. DOI:10.1109/CVPR46437.2021.01268. |